И. В. МАЦУКЕВИЧ, А. И. КЛЫНДЮК

СИНТЕЗ И СВОЙСТВА ДИЗАМЕЩЕННЫХ ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ СЛОИСТОГО КОБАЛЬТИТА КАЛЬЦИЯ

Белорусский государственный технологический университет, Минск

Слоистый кобальтит кальция $Ca_3Co_4O_{9+\delta}$ является полупроводником *p*-типа и характеризуется одновременно высокими значениями электропроводности и термо-ЭДС, а также низкой теплопроводностью, что позволяет рассматривать его как перспективную основу для разработки новых термоэлектрических материалов для *p*-ветвей высокотемпературных термоэлектрогенераторов [1, 2]. Известно, что термоэлектрические характеристики $Ca_3Co_4O_{9+\delta}$ могут быть улучшены путем частичного замещения катионов кальция или кобальта в его структуре катионами других металлов [3–6]. Влияние совместного замещения кальция и кобальта в $Ca_3Co_4O_{9+\delta}$ катионами других металлов на структуру и свойства образующихся при этом твердых растворов ранее не изучалось.

В связи с этим цель настоящей работы – получение дизамещенных твердых растворов на основе слоистого кобальтита кальция $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$ (Ln = Tb, Er), $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi) и изучение их кристаллической структуры, физико-химических и функциональных свойств.

Керамические образцы состава $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$ и $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi) синтезировали цитратным гель-методом по методике, описанной в работе [6], с использованием в качестве исходных реагентов лимонной кислоты $C_6H_8O_7$ (ч.), $Ca(NO_3)_2 \cdot 4H_2O$ (ч. д. а.), $Co(NO_3)_2 \cdot 6H_2O$ (ч. д. а.), $Fe(NO_3)_3$ (х. ч.), $Bi(NO_3)_3 \times 5H_2O$ (ч.), а также Tb_2O_3 (х. ч.) и Er_2O_3 (х. ч.), причем последние предварительно растворяли в концентрированной HNO₃ (ч. д. а.).

Идентификацию образцов и определение параметров их кристаллической структуры проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, CuK_α-излучение). Кажущуюся плотность спеченной керамики ($\rho_{\rm k}$) находили по их массе и геометрическим размерам. Тепловое расширение, электропроводность (σ) и термо-ЭДС (S) керамических образцов Ca_{2.8}Ln_{0.1}Bi_{0.1}Co₄O₉₊₈, Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O₉₊₈ исследовали в интервале температур 300–1100 K, а теплопроводность (λ) в интервале температур 298–423 K по методикам, описанным в работе [4]. Решеточную ($\lambda_{\rm peu}$) и электронную ($\lambda_{\rm 3n}$) составляющие теплопроводности находили по формулам $\lambda = \lambda_{\rm 3n} + \lambda_{\rm peu}$, $\lambda_{\rm 3n} = \sigma LT$, где L – число Лоренца ($L = 2,45 \cdot 10^{-8}$ Br·Oм·K⁻²). Значения коэффициента линейного термического расширения (КЛТР, α) и кажущейся энергии активации электропроводности ($E_{\rm A}$) определяли из линейных участков зависимостей $\Delta l/l_0 = f(T)$ и ln(σT) = f(1/T) соответственно. Величины фактора мощности (P) и показателя термоэлектрической добротности (ZT) полученной керамики рассчитывали по выражениям: $P = S^2 \sigma$ и $ZT = PT/\lambda$ соответственно.

После завершения синтеза образцы кобальтита кальция $Ca_3Co_4O_{9+\delta}$ и твердых растворов $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$, $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi) были однофазными в пределах погрешности РФА и имели структуру слоистого кобальтита кальция [7] (рис. 1). Сопоставление параметров элементарной ячейки твердых растворов $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$, $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ (таблица) с литературными данными для монозамещенных твердых растворов [4, 6, 8, 9] позволяет сделать два заключения: во-первых, размеры элементарных ячеек твердых растворов с частичным совместным замещением кальция висмутом и тербием (эрбием) являются промежуточными между размерами элементарных ячеек монозамещенных твердых растворов $Ca_{2,8}R_{0,2}Co_4O_{9+\delta}$ (R = Bi, Tb, Er), что хорошо согласуется со значениями ионных радиусов катионов, замещающих катионы Ca^{2+} в $Ca_3Co_4O_{9+\delta}$ (согласно [10], для к. ч. = 6 ионные радиусы Bi^{3+} , Tb^{3+} и Er^{3+} составляют 0,102, 0,923, 0,881 нм соответственно); во-вторых, параметры кристаллической структуры дизамещенных твердых растворов $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ и $Ca_4Co_{3,85}M_{0,15}O_{9+\delta}$ [4, 6]. Таким образом, совместное замещение катионов, расположенных в раз-

Рис. 1. Рентгеновские дифрактограммы порошков состава Ca₃Co₄O_{9+d} (1), Ca_{2.8}Tb_{0.1}Bi_{0.1}Co₄O_{9+δ} (2), Ca_{2.8}Tb_{0.2}Co_{3.85}Fe_{0.15}O_{9+δ} (3), Ca_{2.8}Tb_{0.2}Co_{3.85}Bi_{0.15}O_{9+δ} (4)

личных подрешетках кристаллической структуры Ca₃Co₄O₉₊₈, приводит к заметному уменьшению размеров элементарной ячейки образующихся при этом твердых растворов.

Кажущаяся плотность твердых растворов $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+8}$, $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+8}$ изменялась в пределах 2,65–2,91 г/см³, что на 9–20 % ниже, чем для незамещенной фазы $Ca_3Co_4O_{9+8}$ и на 3–13% ниже, чем для монозамещенных твердых растворов $Ca_{2,8}Ln_{0,2}Co_4O_{9+8}$ и $Ca_3Co_{3,85}M_{0,15}O_{9+8}$ [6]. Из чего следует, что спекаемость производных кобальтита кальция снижается при усложнении их состава.

Зависимости $\Delta l/l_0 = f(T)$ для кобальтитов Са_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O₉₊₈ (Ln = Tb, Er; M = Fe, Bi) в интервале температур 300–1100 К были линейными. Откуда следует, что в этом интервале тем-

ператур слоистые соединения не претерпевают структурных фазовых переходов. Сопоставляя представленные в таблице значения КЛТР кобальтита Ca₃Co₄O₉₊₈ и твердых растворов Ca_{2.8}Ln_{0.2}Co_{3.85} $M_{0.15}O_{9+8}$ с литературными данными для монозамещенных твердых растворов Ca_{2.8}Ln_{0.2}Co₄O₉₊₈ [4] и Ca₃Co_{3.85} $M_{0.15}O_{9+8}$ [6, 9], можно заключить, что совместное замещение катионов кальция и кобальта в Ca₃Co₄O₉₊₈ катионами других металлов приводит к значительному снижению КЛТР образующихся при этом дизамещенных твердых растворов, что, очевидно, обусловлено увеличением энергии металл-кислородных взаимодействий в их кристаллической структуре. Следует отметить хорошую корреляцию между результатами рентгенофазового анализа и дилатометрии кобальтитов Ca_{2.8}Ln_{0.2}Co_{3.85} $M_{0.15}O_{9+8}$ – сжатие элементарной ячейки твердых растворов приводит к ожидаемому уменьшению их КЛТР.

Состав	$Ca_3Co_4O_{9+\delta}$	Ca _{2,8} Ln _{0,2} Co _{3,85} M _{0,15} O _{9+δ}				$\operatorname{Ca}_{2,8}Ln_{0,1}\operatorname{Bi}_{0,1}\operatorname{Co}_4\operatorname{O}_{9+\delta}$	
		Ln = Tb, M = Fe	Ln = Tb, M = Bi	$Ln = \mathrm{Er}, M = \mathrm{Fe}$	Ln = Er, M = Bi	Ln = Tb	Ln = Er
а, нм	0,4830(7)	0,4840(7)	0,4835(5)	0,4833(7)	0,4840(7)	0,4826(6)	0,4832(7)
<i>b</i> ₁ , нм	0,4562(8)	0,4550(8)	0,4565(6)	0,4356(8)	0,4550(8)	0,4581(6)	0,4582(8)
<i>b</i> ₂ , нм	0,2812(6)	0,2831(9)	0,2840(9)	0,2820(9)	0,2831(9)	0,2854(9)	0,2841(8)
С, НМ	1,085(1)	1,078(1)	1,0832(8)	1,085(1)	1,078(1)	1,086(8)	1,085(1)
β, °	98,28(8)	98,05(8)	98,02(6)	97,78(9)	98,05(8)	98,17(6)	98,02(8)
<i>V</i> , нм ³	0,2365(10)	0,2350(9)	0,2367(8)	0,2370(9)	0,2350(9)	0,2376(8)	0,2380(10)
b_1/b_2	1,622	1,607	1,607	1,618	1,607	1,605	1,613
α×10 ⁵ , K ⁻¹	1,28	1,20	- 1,17	1,17	1,20	-	_
Е₄, эВ	0,065	0,082	0,083	0,082	0,083	0,081	0,094
ρ _к , г/см ³	3,18	2,91	2,74	2,8	2,65	2,74	2,69

Значения параметров кристаллической структуры (*a*, *b*₁, *b*₂, *c*, β, *V*, *b*₁/*b*₂), коэффициента линейного термического расширения (*a*), кажущихся энергии активации электропроводности (*E*_A) и кажущейся плотности (ρ_k) керамики на основе слоистого кобальтита кальция

Согласно результатам измерения электротранспортных свойств, твердые растворы $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$, $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi) являются полупроводниками *p*-типа, величина электропроводности которых во всем исследованном интервале температур была ниже (за исключением кобальтита $Ca_{2,8}Tb_{0,2}Co_{3,85}Bi_{0,15}O_{9+\delta}$ при T > 920 K), а термо-ЭДС в целом выше, чем для незамещенного кобальтита кальция (рис. 2, *a*, *б*). Сопоставляя результаты данной работы с литературными данными [4, 6, 8, 9], можно отметить, что электропроводность дизамещенных твердых растворов $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$ и $Ca_{2,8}Ln_{0,2}Co_{3,85}Fe_{0,15}O_{9+\delta}$ ниже, чем монозамещенных $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$, $Ca_{2,8}Bi_{0,2}Co_4O_{9+\delta}$ и $Ca_3Co_{3,85}Fe_{0,15}O_{9+\delta}$, а для кобальтитов

Рис. 2. Температурные зависимости электропроводности (б) (*a*), термо-ЭДС (*S*) (б) и фактора мощности (*P*) (*в*) слоистого кобальтита кальция (*l*) и твердых растворов $Ca_{2.8}Er_{0.1}Bi_{0.1}Co_4O_{9+\delta}$ (*2*), $Ca_{2.8}Tb_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$ (*3*), $Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$ (*4*)

 $Ca_{2,8}Ln_{0,2}Co_{3,85}Bi_{0,15}O_{9+\delta}$ занимает промежуточное положение между монозамещенными твердыми растворами $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ и $Ca_3Co_{3,85}Bi_{0,15}O_{9+\delta}$. Таким образом, создание разнородных дефектов замещения в одной (Ln_{Ca} , Bi_{Ca}) или различных (Ln_{Ca} и Fe_{Co}^{\times} или Bi_{Co} (Bi_{Co})) подрешетках кристаллической структуры производных слоистого кобальтита кальция сильнее затрудняет перенос носителей заряда в них, чем создание однородных дефектов замещения в подрешетке кальция или кобальта. Энергия активации электропроводности дизамещенных твердых растворов $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$, $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ составляет 0,081–0,094 эВ (таблица), что заметно выше, чем для незамещенной фазы (0,065 эВ) и сопоставимо с величинами E_A монозамещенных твердых растворов $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$, $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$, $Ca_{2,8}Bi_{0,2}Co_4O_{9+\delta}$ и $Ca_3Co_{3,85}M_{0,15}O_{9+\delta}$ [4, 6, 8, 9].

Значения фактора мощности исследованной керамики возрастали при увеличении температуры и для исследованных твердых растворов были ниже, чем для незамещенного кобальтита кальция (рис. 2, *в*), за исключением кобальтита $Ca_{2.8}Tb_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$, который характеризуется наибольшим значением P - 0,14 мBт/(м·K²) при температуре 1100 K, что на 40% выше, чем для $Ca_{3}Co_{4}O_{9+\delta}$.

Теплопроводность исследуемых кобальтитов в интервале температур 298–423 К изменялась незначительно (рис. 3, *a*), а ее величина составила 0,69–0,75 Вт/(м·К) для твердых растворов $Ca_{2,8}Ln_{0,2}Co_{3,85}Fe_{0,15}O_{9+\delta}$, 0,62–0,65 Вт/(м·К) для кобальтита $Ca_{2,8}Er_{0,1}Bi_{0,1}Co_4O_{9+\delta}$ и 0,53–0,58 Вт/(м·К) для фазы $Ca_{2,8}Er_{0,2}Co_{3,85}Bi_{0,15}O_{9+\delta}$, что на 13, 24% и более чем на 35% ниже, чем для незамещен-

Рис. 3. Температурные зависимости теплопроводности (*a*) и безразмерного показателя термоэлектрической добротности (*б*) слоистого кобальтита кальция (*1*) и дизамещенных твердых растворов $Ca_{2,8}Tb_{0,2}Co_{3,85}Fe_{0,15}O_{9+\delta}$ (*2*), $Ca_{2,8}Er_{0,2}Co_{3,85}Fe_{0,15}O_{9+\delta}$ (*3*), $Ca_{2,8}Er_{0,1}Co_4O_{9+\delta}$ (*4*) и $Ca_{2,8}Er_{0,2}Co_{3,85}Fe_{0,15}O_{9+\delta}$ (*5*)

ного кобальтита кальция. Для дизамещенного твердого раствора Ca_{2,8}Er_{0,1}Bi_{0,1}Co₄O_{9+δ} также на 21% ниже, чем для монозамещенного твердого раствора Ca_{2,8}Er_{0,2}Co₄O_{9+δ} [4]. Электронная составляющая электропроводности ($\lambda_{3,n}$) фаз Ca_{2,8}Er_{0,1}Bi_{0,1}Co₄O_{9+δ}, Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+δ} была невелика и не превышала 3% от общей теплопроводности, а решеточная составляющая (λ_{pem}) была преобладающей (λ_{pem} / $\lambda \approx 97$ –99%) и, как и общая теплопроводность, слабо зависела от температуры. Как видно, создание разнородных дефектов замещения в подрешетке кальция (Er_{Ca} и Bi_{Ca}) является более эффективным способом снижения теплопроводности производных Ca₃Co₄O_{9+δ}, чем создание в ней однородных дефектов замещения (Er_{Ca}) при одинаковой концентрации последних. При этом снижение теплопроводности достигается за счет уменьшения ее решеточной составляющей.

Как видно из рис. 3, *в*, показатель термоэлектрической добротности исследованных твердых растворов возрастал при увеличении температуры в интервале температур 298–423 К и для кобальтитов Ca_{2.8}Er_{0.1}Bi_{0.1}Co₄O_{9+ δ} и Ca_{2.8}Ln_{0.2}Co_{3.85}Fe_{0.15}O_{9+ δ} был ниже, а для твердого раствора Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+ δ} – выше, чем для незамещенного кобальтита кальция. Экстраполяция зависимостей $\lambda = f(T)$ для исследованной керамики в область высоких температур позволяет получить оценочные значения термоэлектрической добротности для кобальтитов Ca_{2.8}Er_{0.1}Bi_{0.1}Co₄O_{9+ δ}, и Ca_{2.8}Tb_{0.2}Co_{3.85}Fe_{0.15}O_{9+ δ}, равные при 1100 K 0,15, 0,13 и 0,11 соответственно, что на 50, 30 и 10% выше, чем для Ca₃Co₄O_{9+ δ}. Как видно, совместное замещение катионов кальция и кобальта в Ca₃Co₄O_{9+ δ} катионами других металлов позволяет получить дизамещенные твердые растворы с улучшенными по сравнению с базовой фазой термоэлектрическими характеристиками при повышенных температурах.

Таким образом, в настоящей работе впервые синтезированы дизамещенные твердые растворы на основе слоистого кобальтита кальция $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$ и $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi). Определены параметры их кристаллической структуры и изучен комплекс их физико-химических свойств. Установлено влияние частичного совместного замещения катионов кальция катионами тербия, эрбия и висмута, а кобальта – катионами железа и висмута на кристаллическую структуру, электротранспортные и теплофизические свойства кобальтитов $Ca_{2,8}Ln_{0,1}Bi_{0,1}Co_4O_{9+\delta}$ и $Ca_{2,8}Ln_{0,2}Co_{3,85}M_{0,15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi). Показано, что твердые растворы $Ca_{2,8}Er_{0,1}Bi_{0,1}Co_4O_{9+\delta}$, $Ca_{2,8}Er_{0,2}Co_{3,85}Bi_{0,15}O_{9+\delta}$ и $Ca_{2,8}Tb_{0,2}Co_{3,85}Fe_{0,15}O_{9+\delta}$ имеют улучшенные по сравнению с базовой фазой $Ca_3Co_4O_{9+\delta}$ термоэлектрические характеристики. Откуда можно заключить, что совместное замещение катионов кальция и кобальта в слоистом кобальтите кальция представляет научный и практический интерес как способ получения термоэлектрической оксидной керамики с улучшенными функциональными характеристиками.

Авторы выражают благодарность В. М. Кононовичу за запись рентгеновских дифрактограмм, а также Л. Е. Евсеевой за измерение теплопроводности образцов. Работа выполнена в рамках ГПНИ «Функциональные и композиционные материалы, наноматериалы», подпрограмма «Кристаллические и молекулярные структуры» (задание 1.02), а также при поддержке Министерства образования Республики Беларусь.

Литература

1. Koumoto K., Terasaki I., Murayama N. / Oxide Thermoelectrics. Research Signpost // Trivandrum. India. - 2002. - 255 p.

2. Fergus J. W. // J. of Europ. Ceramic Society. - 2012. Vol. 32. - P. 525-540.

3. Prevel M., Perez O., Noudem J. G. // Solid State Sciences. - 2007. Vol. 9. - P. 231-235.

4. Клындюк А. И., Мацукевич И. В. // Неорган. материалы. – 2012. – Т. 48, №10. – С. 1181–1186.

5. Wang Y., Sui Y., Ren P., Wang L., Wang X., Su W., Fan H. // Chem. Mater. - 2010. Vol. 22. - P. 1155-1163.

6. Мацукевич И. В., Клындюк А. И. // Термоэлектричество. – 2013. – № 3 – С. 50–57.

7. Massett A. C., Michel C., Maignan A. et al. // Phys. Rev. B. - 2000-I. - Vol. 62, N 1. - P. 166-175.

8. Клындюк А. И., Мацукевич И. В. // Свиридовские чтения: сб. ст. / О. А. Ивашкевич (пред.) [и др.]. – Минск: БГУ, 2012. – Вып. 8. – С. 44–51.

9. Мацукевич И. В., Клындюк А. И. // Научные стремления – 2012: сб. материалов III Междунар. науч.-практ. молодеж. конф., Минск, 6–9 нояб. 2012 г., в 2 ч. – Минск: Беларус. навука, 2012. – Т. 1. – С. 190–194.

10. Shannon R. D., Prewit C. T. // Acta Cryst. - 1969. - Vol. B25, Pt. 5. - P. 946-960.