ВЛИЯНИЕ КАТИОННОЙ НЕСТЕХИОМЕТРИИ НА СТРУКТУРУ И СВОЙСТВА СЛОИСТОГО ФЕРРОКУПРАТА ЛАНТАНА–БАРИЯ

Е.А. Чижова, А.И. Клындюк, Н.С. Красуцкая, В.М. Кононович Белорусский государственный технологический университет 220050, Минск, ул. Свердлова, 13А

Слоистые феррокупраты РЗЭ и бария представляют интерес в качестве материалов для химических катализаторов [1] или полупроводниковых сенсоров газов [2], при этом улучшения функциональных характеристик этих фаз можно добиться путем частичного гетеровалентного замещения катионов, входящих в их состав [1,3].

Одним из методов регулирования свойств функциональных материалов на основе перовскитов является их самолегирование – направленное создание в них катионной нестехиометрии [4]. Метод основан на способности перовскитов (ABO₃) сохранять свою кристаллическую структуру при образовании до 5–10 % вакансий в их А- или В-подрешетках [5]. В случае феррокупратов (R,Ba)(Cu,Fe)O_{5+δ} \equiv (A'A")(B'B")O_{5+δ} самолегирование может быть достигнуто также за счет взаимозамещения A- (R³⁺⇔Ba²⁺) и В-катионов (Cu²⁺⇔Fe³⁺) их кристаллической структуры. Преимуществом метода является то, что изменение свойств материалов производится без увеличения числа компонентов, входящих в их состав, т. е., без химического усложнения системы.

В работе изучено влияние катионной нестехиометрии на параметры кристалллической структуры, термическое расширение, электропроводность и термо-ЭДС производных слоистого феррокупрата лантана-бария LaBaCuFeO₅₊₈. Образцы получали керамическим методом из BaCO₃ и оксидов остальных металлов квалификации не ниже "ч" [6]. Параметры кристаллической структуры образцов определяли при помощи РФА (Bruker D8 XRD, CuKaизлучение) и ИК-спектроскопии поглощения (Nexus ThermoNicolet). Содержание кислорода образцах контролировали при помощи иодометрии. Термическое расширение, электропроводность и термо-ЭДС спеченных образцов исследовали на воздухе в интервале температур 300-1100 К по методикам, описанным ранее [6, 7]. Найденные экспериментально значения электропроводности керамики пересчитывали на нулевую пористость по методике [8].

Содержание кислорода в образцах, согласно иодометрии, было примерно одинаковым, из

Рис. 1. Дифрактограммы (CuK α -излучение) и ИК-спектры поглощения порошков LaBaCuFeO_{5.47} (1), La_{0.95}BaCuFeO_{5.43} (2), LaBa_{0.95}CuFeO_{5.45} (3), LaBaCu_{0.95}FeO_{5.44} (4), LaBaCuFe_{0.95}O_{5.42} (5)

чего следует, что образование катионных вакансий и взаимозамещение А-и В-катионов в

LaBaCuFeO_{5+δ} компенсируется изменением средней степени окисления меди и железа (от +2.97 для LaBaCuFeO_{5.47} до +2.90÷3.02 для остальных образцов). Структура La_{0.95}BaCuFeO_{5.43}, как и LaBaCuFeO_{5.47}, была кубической, тогда как образование катионных вакансий в [Ba(Cu,Fe)₂O₅]∞-блоках фазы LaBaCuFeO_{5+δ} приводило к тетрагональному искажению ее кубической структуры (рис. 1). Возрастание средней степени окисления Вкатионов вызывало сжатие элементарной ячейки образцов в направлении, перпендикулярном -(Cu,Fe)O₂-слоям.

Размер элементарной ячейки феррокупрата лантана-бария практически не изменялся при частичном замещении лантана барием ($Ba^{2+} \rightarrow La^{3+}$) и уменьшался при частичном замещении бария лантаном ($La^{3+} \rightarrow Ba^{2+}$), что согласуется с размерами катионов, расположенных в А-подрешетке LaBaCuFeO_{5+δ} ($R_{La^{3+}} = 0.132$ нм, $R_{Ba^{2+}} = 0.160$ нм для к. ч. = 12 [9]). Частичное взаимозамещение В-катионов в структуре феррокупрата лантана-бария приводило в обоих случаях (Fe³⁺ \rightarrow Cu²⁺, Cu²⁺ \rightarrow Fe³⁺) к сжатию элементарной ячейки образцов.

На зависимостях $\Delta l/l_0 = f(T)$ для всех исследованных образцов обнаружена аномалия в виде излома при $T^* = 630-725$ К (табл.), обусловленная перестройкой их кислородной подрешетки, сопровождающейся выделением кислорода [6]. Величина T^* для А-замещенных и В-дефицитных феррокупратов (630–685 К) близка к таковой для базовой фазы – LaBaCuFeO_{5+δ} (650 K), а для А-дефицитных и В-замещенных – смещена в сторону более высоких температур (665–725 K). Значения коэффициента линейного термического расширения (КЛТР, α) феррокупратов при $T > T^*$ выше, чем при $T < T^*$, поскольку при $T > T^*$ в КЛТР дополнительный вклад вносит образование кислородных вакансий в структуре LaBaCuFeO_{5+δ}. Величины α феррокупратов лантана–бария с дефицитом катионов были меньше, чем для LaBaCuFeO_{5+δ} (табл.), что более выражено при $T < T^*$, и хорошо согласуется с результатами работы [10], в которой показано, что КЛТР перовскитных феррокобальтитов La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} (структурно родственных слоистым феррокупратам) уменьшается при образовании катионных вакансий в их структуре.

Как видно из рис. 2, все изученные фазы, как и исходный LaBaCuFeO₅₊₈, являются полупроводниками *p*-типа [6,11], характер проводимости (σ) которых изменяется от полупроводникового $\left(\frac{\partial \sigma}{\partial T} > 0\right)$ к металлическому $\left(\frac{\partial \sigma}{\partial T} < 0\right)$, а коэффициент термо-ЭДС (S) начинает резко возрастать вблизи 750 К, что обусловлено началом термической Электропроводность образцов La_{0.95}BaCuFeO₅₊₈, диссоциации этих фаз [6]. La0 90 Ba1 10 CuFeO5+8, La1 10 Ba0 90 CuFeO5+8 была близка к таковой для LaBaCuFeO5+8, особенно при высоких температурах, тогда как величины σ остальных феррокупратов во всем изученном интервале температур были значительно ниже (рис. 2а, в). Из полученных результатов следует, что наибольшее влияние на проводимость слоистых феррокупратов оказывает образование катионных дефектов в их проводящих [Ba(Cu,Fe)2O5] - блоках. Значения термо-ЭДС А-замещенных образцов феррокупрата лантана-бария были несколько ниже, а В-замещенных – значительно выше, чем для базовой фазы (рис. 2г). Величины Sкатиондефицитных феррокупратов, кроме LaBaCuFe_{0.95}O₅₊₈, в области температур 300–1000 К

Рис. 2. Температурные зависимости электропроводности (a, 6) и коэффициента термо–ЭДС (b, c) керамических образцов феррокупрата лантана–бария состава: LaBaCuFeO_{5+δ} (1), La_{0.95}BaCuFeO_{5+δ} (2), LaBa_{0.95}CuFeO_{5+δ} (3), LaBaCu_{0.95}FeO_{5+δ} (4), LaBaCuFe_{0.95}O_{5+δ} (5), La_{0.90}Ba_{1.10}CuFeO_{5+δ} (6). La_{1.10}Ba_{0.90}CuFeO_{5+δ} (7). LaBaCu_{0.95}FeO_{5+δ} (8). LaBaCu_{1.05}Fe_{0.95}O_{5+δ} (9)

были близки между собой (рис. 26).

Таблица. Значения КЛТР (α), энергии активации электропроводности (E_{σ}) и термо-ЭДС (E_{s}), а также параметров электропереноса – энергии возбуждения (E) и переноса (W) носителей заряда в проводящих –(Cu,Fe)O₂–слоях кристаллической структуры слоистого феррокупрата лантана–бария

Образец	$\alpha \cdot 10^6, \mathrm{K}^{-1}$		<i>T</i> *, K	$E_{\sigma}, \Im \mathbf{B}$	$E_{\rm S} = E, \Im {\rm B}$	<i>W</i> , эВ
	(T<	(T*			1	
	(<i>T</i> *)	< <i>T</i>)				
LaBaCuFeO _{5+δ}	14.1	20.4	650	0.07	0.02	0.05
La _{0.95} BaCuFeO _{5+δ}	12.6	20.9	725	0.11	0.03	0.08
LaBa _{0.95} CuFeO _{5+δ}	14.0	19.2	720	0.17	0.02	0.15
LaBaCu _{0.95} FeO _{5+δ}	11.0	18.1	685	0.16	0.03	0.13
LaBaCuFe _{0.95} O ₅₊₈	10.6	16.8	630	0.17	0.03	0.14
$La_{0.90}Ba_{1.10}CuFeO_{5+\delta}$	16.8	22.5	635	0.13	0.02	0.11
$La_{1.10}Ba_{0.90}CuFeO_{5+\delta}$	15.9	20.0	630	0.12	0.04	0.08
LaBaCu _{0.95} Fe _{1.05} O _{5+δ}	12.2	16.3	720	0.15	0.04	0.11
LaBaCu _{1.05} Fe _{0.95} O _{5+δ}	12.6	16.9	665	0.16	0.01	0.15

Рассчитанные из зависимостей $\ln(\sigma \cdot T) = f(1/T)$ и S = f(1/T) для феррокупратов лантанабария значения E_{σ} и E_{S} приведены в табл. Как видно, образование катионных дефектов в структуре LaBaCuFeO₅₊₈ приводит к росту энергии активации электропроводности образцов и слабо сказывается на величине энергии активации их термо–ЭДС. Описывая электротранспортные свойства феррокупратов в рамках модели поляронов малого радиуса (ПМР) [12], из результатов измерений σ и S можно определить параметры процессов переноса заряда: энергию возбуждения ПМР ($E, E = E_S$) и энергию его переноса ($W, W = E_{\sigma} - E$). Как видно (табл.), образование катионных вакансий в LaBaCuFeO₅₊₈ слабо влияет на величину энергии возбуждения ПМР, приводя к значительному росту энергии их переноса, наиболее выраженному для образцов с дефектами в [Ba(Cu,Fe)₂O₅]_∞-блоках. Увеличение энергия возбуждения ПМР в феррокупрате лантана—бария наблюдается только при акцепторном $(Me^{3+} \rightarrow Me^{2+})$ замещении катионов в его структуре, тогда как энергия переноса ПМР в LaBaCuFeO₅₊₈ увеличивается во всех случаях, что сильнее выражено при замещении катионов в проводящих --(Cu,Fe)O₂-слоях.

Работа выполнена при финансовой поддержке БРФФИ (грант X06М-002) и ГКПНИ "Кристаллические и молекулярные структуры" (задание 33).

Список литературы

- 1. T. Rentschler. Thermochim. Acta, 284, 367 (1996).
- 2. A. Klyndziuk, G. Petrov, S. Kurhan, Ye. Chizhova, A. Chabatar, L. Kunitski, L. Bashkirov. Chem. Sens., **20B**, 854 (2004).
- 3. А.И. Клындюк, Е.А. Чижова, И.А. Таратын. Труды БГТУ. Сер. III. Хим. и технол. неорган. в-в. Мн., XIII, 54 (2005).
- 4. А.И. Клындюк, Е.А. Чижова. Труды БГТУ. Сер. III. Хим. и технол. неорган. в-в. Мн., XIV, 39 (2006).
- 5. Т.Н. Кольцова, Г.Д. Нипан. Журн. неорган. хим., 41, 1944 (1996).
- 6. А.И. Клындюк, Е.А Чижова. Неорган. материалы, **42**, 611 (2006).
- 7. Е.А. Чижова, А.И. Клындюк, Л.А. Башкиров, Г.С. Петров, Л.В. Махнач, Е.В. Некрашевич. Весці НАНБ. Сер. хім. навук, **4**, 40 (2004).
- 8. A.K. Tripathi, H.B. Lal. Mater. Res. Bull., 15, 233 (1980).
- 9. R.D. Shannon, C.T. Prewitt. Acta Cryst. B, 25, 946 (1969).
- 10. G.Ch. Kostogloudis, Ch. Ftikos. Solid State Ionics, 126, 143 (1999).
- 11. L. Er–Rakho, C. Michel, F. Studer, B. Raveau. J. Phys. Chem. Sol., 48, 377 (1987).
- 12. Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982).