А. В. Дунаева, А.Н. Мурашкевич (БГТУ, Минск)

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ НАНОДИСПЕРСНЫХ ОКСИДОВ, МОДИФИЦИРОВАННЫХ КАРБОНОВЫМИ КИСЛОТАМИ

Новые многообещающие возможности получения селективных катализаторов предоставляет эффект "памяти" в катализе, который заключается в том, что твердое тело, синтезированное или состаренное в присутствии определенного вещества-модификатора при последующих адсорбционных или каталитических испытаниях, проявляет избирательность по отношению к модифицирующему веществу за счет присутствия его молекулярного отпечатка.

Эффект каталитической "памяти" для оксидных катализаторов исследован сравнительно мало. В основном работы были выполнены на специфических силикагелях.

Ранее показано, что модификация нанодисперсных оксидов кремния-титана органическими молекулами сопровождается изменением ряда их свойств [1, 2].

Целью настоящей работы являлось получение индивидуальных и смешанных оксидов в системах TiO_2 – SiO_2 , TiO_2 – ZrO_2 , их модификация органическими кислотами различного строения, в том числе с созданием их молекулярного отпечатка, а также изучение адсорбционных, кислотно основных свойств новых материалов.

Синтез индивидуальных и двойных оксидов

оксида кремния получали ИЗ раствора гексафторкремниевой кислоты концентрацией 12–14 мас. % с карбонатом = 5,1 осаждением отношением F:Si Концентрация SiO₂ в получаемом золе составляла 2,5–3,3 мас. %, диаметр частиц до 10 нм. Золь ТіО2 получали пептизацией в присутствии кислоты предварительно азотной осажденного гидратированного оксида титана из раствора TiCl₄ в воде 20% водным раствором карбоната аммония. Диаметр частиц составлял 10-15 нм, концентрация TiO_2 – 3 мас.%. Золь ZrO_2 получали из смеси компонентов: $ZrO(NO_3)_2 \cdot 2H_2O$, H_2O_3 , H_2O_2 , взятых при массовом соотношении 1:13:1,3, с выдержкой в автоклаве 24 ч при температуре 110°С (≅ 3 мас. % ZrO₂). Оксид циркония получали смешением золя ZrO₂ с раствором карбоната аммония или калия, далее продукт промывали и сушили при 110–120°C до постоянной массы.

Синтез соосажденных композитов в системе SiO_2 – TiO_2 проводили с использованием спиртовых растворов тетраэтоксисилана (ТЕОС) и тетраизопропоксида титана (ТИИПТ), которые смешивали, выдерживали при перемешивании в течение 2–24 ч, фильтровали, отмывали от продуктов гидролиза и сушили. В ряде синтезов добавляли растворы модификаторов в этиловом спирте, ДМФА, Pr^iOH (ИПС). Далее производили отмывку, фильтрование, сушку и прокаливание композитов.

Получение композитов в системе SiO_2 - TiO_2 по методике зольсмешением золей оксидов кремния, предварительно полученных вышеописанными методами, последующей сушкой. Получение композитов по методике золь-золь в системе TiO₂-ZrO₂ проводили смешением золей оксидов титана и циркония с последующим осаждением 20 % раствором (NH₄)₂CO₃ или додециламина до рН ≈ 3,5-8. Образующийся гель промывали, органического модификатора, раствор полученную дисперсию, обрабатывали в ультразвуковой ванне 30 мин, затем часть продукта сушили при T=110-150°C, остальную часть промывали водой или органическими растворителями для удаления модификатора. Таким образом, модификацию индивидуальных оксидов и композитов карбоновыми кислотами проводили либо на заключительной стадии синтеза, либо при смешении исходных компонентов. Соотношение между оксидами и модификатором варьировали в интервале 0,33-1,0.

C целью оценки влияния условий сушки на заключительной стадии синтеза температуру для некоторых образцов варьировали от $20\ \rm дo\ 120^{\rm o}C$.

Определение величины удельной поверхности ($S_{yд}$) образцов на границе раздела газ/твердое оценивали путем адсорбции фенола из раствора в н-гептане, концентрацию фенола определяли методом интерферометрии с помощью ЛИР-2. Измерения проводили только для образцов, высушенных при температуре 120°C. Это связано с необходимостью температурной тренировки образцов для адсорбционных измерений.

Исследование кислотно-основных свойств поверхности синтезированных образцов проводили индикаторным методом по адсорбции красителей различного типа из водных растворов. Поскольку протонодонорная способность ОН групп различных типов на поверхности одного и того же материала неодинакова, была использована серия из 10 индикаторов с различными значениями рК (1,3–12,8), каждый из которых позволяет фрагментарно оценить

содержание реакционных групп на поверхности в довольно узком интервале кислотности.

Изучение спектральных характеристик индикаторов, а также количественное определение красителя проводили спектрофотометрическим методом на спектрофотометрах «КФК-3» при толщине кюветы 1 см. Сорбцию проводили из 10^{-4} М растворов индикаторов. Точную навеску высушенного образца около 0,02 г (выбранную исходя из минимальной ошибки при количественных определениях и технических возможностей прибора) помещали в пробирку, приливали 5 мл раствора красителя и перемешивали в течение 2 ч. Значение оптической плотности измеряли при длине волны λ , соответствующей максимуму поглощения индикатора. Разделение образца и раствора красителя проводили на центрифуге. Концентрацию кислотно-основных центров рассчитывали в мкмоль/г.

1.2 Результаты и их обсуждение

Для оценки влияния природы неорганического носителя на свойства синтезируемых органо-минеральных композитов, предполагаемая область использования — гетерогенные катализаторы, проведена серия синтезов ZrO_2 и неорганических двойных оксидов в системах TiO_2/ZrO_2 , SiO_2/TiO_2 при различных условиях сушки. Также выполнен ряд синтезов по модификации оксида циркония и двойных оксидов TiO_2/ZrO_2 и SiO_2/TiO_2 карбоновыми кислотами с варьированием условий сушки. Результаты приведены в таблицах 1 и 2.

Из таблицы 1 видно, что повышение рН осаждения от 4 до 8 сопровождается заметным уменьшением удельной поверхности оксида циркония. В тоже время осуществляется более полное осаждение продукта, что подтверждается результатами балансовых опытов. Получение продукта в аналогичных условиях в присутствии органических молекул сопровождается аналогичной тенденцией, но влияние органических модификаторов не так существенно как повышение рН среды.

Для образцов TiO_2/ZrO_2 при изменении природы осадителя и состава дисперсионной среды заметного изменения удельной поверхности продукта не установлено. Однако видно (образцы 7,8, табл. 1) что введение модификатора сильно уменьшает удельную поверхность: в образце 7, табл. 1, в котором модификатор — малоновая кислота полностью удалена промывкой водой, удельная поверхность уменьшилась в 10 раз по сравнению с образцом 5, а в образце 8 после удаления 2-хлор-4-нитробензойной кислоты — в 31 раз, что может свидетельствовать о существенном влиянии присутствия

модификатора на процессы золь-гель перехода и трансформации геля в осажденный продукт.

Таблица 1 — Условия и некоторые результаты синтеза индивидуального оксида циркония и двойного оксида в системе TiO_2/ZrO_2 , модифицированных карбоновыми кислотами (сушка всех образцов осуществлялась при $110^{\circ}C$)

№ образца	Осадитель	рН	Модификатор, мас. соотношение оксид: модификатор	Условия отмывки	S _{уд} , м ² /г					
Образцы $-$ ZrO $_2$										
1	(MIL) CO	4,22	_	Вода	120					
2	$(NH_4)_2CO_3$	8,30	_	Вода	27					
3		8,40	L-пролин , (1:1)	Вода	21					
4	K ₂ CO ₃	8,04	2-хлор-4- нитробензойная кислота, (1:1)	C ₂ H ₅ OH, Pr ⁱ OH	10					
Образцы	Образцы— TiO ₂ /ZrO ₂ (1:0,67 мол), полученные из золей									
5	$(NH_4)_2CO_3$	_	_	Вода	101					
6		_	_	Вода, С ₂ H ₅ OH	93					
7	додециламин	_	Малоновая кислота, (1:1)	Вода, С ₂ H ₅ OH	9					
8		_	2-хлор-4- нитробензойная кислота (1:1)	C ₂ H ₅ OH, Pr ⁱ OH	3					

Из таблицы 2 видно, что в обоих вариантах синтеза двойных TiO_2/SiO_2 оксидов влияние модификаторов проявилось не так существенно на удельную поверхность образцов, как это установлено для TiO_2/ZrO_2 оксидов и индивидуального оксида циркония. Для более детальной оценки изменения других текстурных характеристик необходимы дополнительные адсорбционные исследования.

В таблице 3 приведены результаты исследования кислотно-основных свойств ZrO_2 и двойных оксидов в системах TiO_2/ZrO_2 , SiO_2/TiO_2 до модификации и после удаления модификатора.

Таблица 2 — Условия и некоторые результаты синтеза двойных оксидов в системе TiO_2/SiO_2 , модифицированных карбоновыми кислотами

No	Условия	Модификатор,	мас.	Условия	S_{VZ} ,
----	---------	--------------	------	---------	------------

образца	сушки	соотношение двойной	ОТМЫВКИ	M^2/Γ					
	(°C)	оксид : модификатор							
Образцы — $TiO_2/SiO_2(1:1 \text{ масс})$, полученные из золей									
9	120	_	_	156					
10	60	_	_	_					
11	120	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		201					
12	60	2-хлор-4-нитробензойная	C ₂ H ₅ OH, Pr ⁱ OH	_					
13	20	кислота (1:0,3)		_					
14	120	Torobrosono		174					
15	60	Терефталевая кислота (1:0,3)	ДМФА, вода	_					
16	20	(1.0,3)		_					
Образцы	Образцы — $TiO_2/SiO_2(1:1, мас.)$, полученные из алкоксидов титана и								
кремния									
17	120			68					
18	60	_	_	_					
19	120	2-хлор-4-нитробензойная	C ₂ H ₅ OH, Pr ⁱ OH	76					
20	60	кислота (1:0,3)	$C_2\Pi_5\Pi$, PIOH	_					

Как видно в табл. 3, для индивидуального диоксида циркония наиболее существенное изменение кислотно-основных произошло после модификации 2-хлор-4-нитробензойной кислотой: не только вдвое увеличилась общая концентрация центров в исследованном интервале рК, но и произошло перераспределение природы центров в сторону заметного увеличения основных центров Бренстеда с pK>5. На поверхности оксидов TiO₂/ZrO₂ установлена концентрация кислотно-основных центров высокая сравнению с оксидом циркония, однако, в образцах 7,8 после удаления модификаторов изменение строения гидратногидроксильного покрова произошло в сторону заметного уменьшения общей концентрации кислотно-основных центров почти вдвое, что может быть связано с существенным уменьшением удельной поверхности. Произошло и перераспределение природы центров с заметным

Таблина 3 -	– Кислотно-основные	свойства ZrO ₂	и лвойных оксилов	в системах ZrO	$\sqrt{\text{TiO}_2}$	SiO ₂ /TiO ₂
т иолици э	TCHCHO THO OCHOBIIBIC	CBOMCIBU ZIO	и двоиных оксидов	b chereman Lio	// 110/	010//110/

Образец	$N_{\underline{0}}$	рК										
		1,3	2,1	3,46	4,1	5	6,4	7,3	8	9,6	12,8	\sum
ZrO_2 ,	2	3,84	_	_	17,94	4,31	11,78	5,48	5,76	0,99	1,98	52,08
№ табл.1	3	_	_	_	17,43	3,71	12,29	4,41	2,82	3,28	1,06	44,99
	4	_	_	11,58	18,27	17,13	7,75	6,48	6,79	8,2	7,09	83,29
ZrO ₂ /TiO ₂	5	10,76	_	_	19,5	_	15,69	11,99	7,9	4,79	_	70,63
№ табл.1	6	17,76	_	18,1	6,5	24,01	6,37	5,23	10,7	8,8	1,34	98,8
	7	2,88	_	_	12,66	18,59	_	2,17	_	2,75	6,86	45,91
	8	10,77	_	_	13,95	20,84	_	2,73	_	5,27	_	53,56
SiO ₂ /TiO ₂	10	19,94	_	_	_	23,53	1,1	6,1	1,1	4,6	8,43	64,8
(из золей)	11	17,9	_	_	4,2	23,7	1,7	5,4	16,9	4,7	8,6	83,1
№ табл.2	12	21,04	_	_	2,87	21,69	8,36	10,46	5,39	6,78	8,99	85,58
	13	22,53	_	_	_	21,75	5,8	5,46	4,14	10,3	11,04	81,05
	14	11,57	_	_	6,5	21,79	_	1,64	_	8,1	_	49,6
	15	12,05	_	_	7,3	21,08	_	2,14	_	8,8	1,29	52,66
	16	22,38	1,63	_	2,63	23,65	2,77	7,78	1,86	_	17,68	80,38
SiO ₂ /TiO ₂ ,	17	_	_	_	9,24	8,83	9,17	3,2	_	5,46	1,04	36,94
(из алко-	18	10,99	2,49	_	9,26	21,22	4,59	2,48	_	6,79	1,64	59,46
ксидов)	19	14,5	_	_	_	23,66	_	1,54	_	10,87	3,11	53,68
№ табл.2	20	13,43	_	_	1,54	19,99	_	2,2	_	9,98	2,79	49,93

уменьшением количества слабо-кислотных центров при сохранении соответствующих рК=1,3. Тенденция существенного изменения кислотно-основных свойств после модификации 2-хлор-4нитробензойной кислотой характерна и для оксидов SiO₂/TiO₂. Причем изменение температуры сушки в исследованном интервале также более существенно сказалось для образцов, модифицированных этой кислотой. Сравнение характеристик образцов оксидов SiO₂/TiO₂, полученных из золей и соответствующих алкоксидов, как по величине удельной поверхности, так и по кислотно-основным центрам позволяет на данном этапе отдать предпочтение первым, хотя последнее слово остается за исследованием данных образцов в катализе. Как показано ранее [2], оба варианта образцов позволили увеличить не только стереоселективность реакции Биджинелли, но и выход целевого продукта.

ЛИТЕРАТУРА

- 1. Федорова О.В., Мурашкевич А.Н., Корякова О.В., Русинов Г.Л., Чарушин В.Н. Структурно управляемое модифицирование поверхности индивидуальных и двойных оксидов Si, Ti, Al и Zr органическими молекулами. Новые подходы и возможности Тезисы пятой Междунородной конференции стран СНГ «Золь-гель синтез и исследование неорганических соединений, гибридных функциональных материалов и дисперсных систем «Золь-гель 2018». СПб.: Издательство «Лема», 2018 г, С. 108–109.
- 2. Мурашкевич А.Н., Федорова, О.В., Алисиенок О.А., Титова Ю.А. Влияние модификации нанодисперсных оксидов кремния-титана органическими молекулами на их структурно-адсорбционные, кислотно-основные и каталитические свойства Химия и химическая технология: VI международная конференция: Сборник материалов. Ереван: Институт общей и неорганической химии Национальной академии наук Республики Армения, 2019. С. 227–230.

Работа выполнена при финансовой поддержке Белорусского фонда фундаментальных исследований (Проект № X18P-032).