Krmela Jan (Alexander Dubček University of Trenčín Slovak Republic; University of Pardubice, Czech Republic) Krmelová Vladimíra, Gavendová Mária, Bakošová Alžbeta (Alexander Dubček University of Trenčín Slovak Republic) Kasperovich Andrei (Belarusian State Technological University, Belarus) Sadjiep Sylvain (University of Pardubice, Czech Republic)

METHODS FOR DETERMINING THE PHYSICO-MECHANICAL PROPERTIES OF POLYMERS

The paper deals with design of methods for static experiment and dynamic experiment as low-cyclic tensile tests of polymer reinforcements for composites with using temperature chamber. For textile materials, DIN 53835-13 standard is defined [1] and according to mentioned standard the conditions are takes into consideration during the first 5 cycles.

The universal testing device Autograph AG-X plus 5 kN – Schimadzu with video-extensometer with test mode Control of software Trapenzium X was used for experiments [2]. The calibration process is shown on the Fig. 1.

The design of method is on the Fig. 2, loading speeds are set to 250 mm/min for cycles and 50 mm/min for a pre-test by force value 2 N. The test consisted of ten cycles; every cycle is defined as loading to certain percent of elongation with pause 5 sec (measurement with stress relaxation). The loading speed of 150 mm/min (as the second method) was used to compare the results with loading speed of 250 mm/min. Special jaws for textile materials were used. The initial length between the jaws was 250 mm. The measured length (i.e. the distance between points for the video-extensometer) was approximately 150 mm.

The first tests for polyester were done upon selected positive temperatures (25 and 80 $^{\circ}$ C), see sample on the Fig. 3. Dependences of force on deformation obtained by video-extensometer are on Fig. 4.

The results will be use in computational modeling as inputs for calculations in relation to the material characteristics and parameters. The next research area of authors will be focused on the specific testing of polymers upon cyclic multi-axis (biaxial) temperature loading with special testing equipment called Arcan test (see Fig. 5) with temperature chamber allows the tests from -70 to + 180 °C and from +20 to + 80 °C it is possible change humidity from 30 to 95 %.

sila						Np	osuv				mm %		29.8841	% Cas	0.000
		-17	4.3	5					74.7	102	Ex.	_posuv	199.8826	mm Ex_pomème	158.683
Galt	_	_	_		_		_	_	_	× 16VinwX				× 4	alenthy(Davita)
0	0.6	1.2	1.8	24 EX.J	proditouze 3	3.6	4.2	4.8	5.4	f Test	1000	No. of Concession, Name	Kalibrace .		Jinéeo Recemente
12	1	-	1	T		- E	1	1	1	Kalibrace		8 G =		Displacement am	Schvald/Znalid
										1. Fit the "Ga and the "Fra	upe mark" the Net",		- HL _ 2018	199.0024	Jednotka Tirk
.11		1							1				RI CONTRACTOR	60.0148	A 1
										2. Adjust the	Carriera so			Rul	
10										that Roll, Pfs blue.	n, Yew terns	States of		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	. E.											THE R.		Pron	
1.00										3. Citck each	Cat' button			1 💽	
				<u>b</u>										Yaw	
												1.			
7															
				1						CHO	imora 1				
No												100 1001			
5															
												p	The second se		
4							111		i ni ji ni		in the second				
										Carrera //	amera 1 💌	Displacement			
3										LEO	property	2 10000	mmmm		
	in See			un les								Śłłwa			
										-	-	CO NUMBER			
1												CONTRACTOR OF			

Figure 1 – Calibration process

AND ADDRESS OF A	5	ystem		Sensor	Test	ování	Vzor	ek 🔤	Zpra	ování dat		Graf	Report		
á testovacích Í.	Kopíru)	Viožt	Sm	azat Vyčist											
w výchozí disp.		Plocha1	Plocha2	Plocha3	Plocha4	Piocha5	Plocha6	Plocha7	Plocha8	Plocha9	Piocha10	Plocha11	Plocha12	Ploch7	
		1	\rightarrow	1		1		1	\rightarrow	1	-	1	\rightarrow	1	
Act pro každou		Nahoni	Hold	Nahoni	Hold	Nahona	Hold	Nahoni	Hold	Naboru	Hold	Nabonu	Hold	Nabo	
ALC. DIO KAZUOU		Zdvih *	Zdvih	· Zdvih ·	Zdvih	Zdvih	Zdvih v	Zdvih v	Zdvih	Zdvih v	Zdvih	Zd/h *	Zdvih	Zdre	
	Act.	250.00		250.00		250.00		250.00		250.00		250.00		250	
ood změny pro oblast		mm/min		mm/min_ <u>-</u>		mm/min_ <u>~</u>		mm/min		mm/min		nim/mm		m	
etData, atd.		Details	Details	Details	Details	Details	Details	Details	Details	Details	Details	Details	Details	Deta	
blast		Kanál 👻	Duration	 Kanál 	Duration *	Kanál 👻	Duration Y	Kanál -	Duration "	Kanál 👻	Duration	Kanál 👻	Duration *	Kanál	
		% -				96 V	_	% ·		% V		% ·		56	
rc td	Change point	0.49	5	0.87	5	1.37	5	1.87	5	2.38	5	2.87	5	3.3	
	-	44	Sec	6	580	46	SPC	56	Sec	%	sec	*	sec		
metoda		Set	Set	Set	Set	Set	54	Set	54	Set	Set	Set	Set	Set	
it i	GetData	% Ex_posuv Ex_por3	6 Ex_posuv Ex,	por% Ex_posuv Ex_po	r% Ex_posuv Ex_por	r% Ex_posuv Ex_por	% Ex_posuv Ex_por	6 Ex_posuv Ex_por	% Ex_posuv Ex_po	r% Ex_posuv Ex_por)	Ex_posuv Ex_po	r% Ex_posuv Ex_por	% Ex_posuv Ex_po	% Ex_posur	
	Samplings	10msec	0.2sec	10msec	0.2sec	10msec	0.2sec	10msec	0.2sec	10msec	0.2sec	10msec	0.2sec	10ms	
	Smyčka	Nic	Nic	Nic	Nic	Nic	Nic	Nic	Nic	Nic	Nic	Nic	Nic	Nic	
				14				2 10 10 10 10 10 10 10 10 10 10 10 10 10				16			
	Konec N	Break Detectio	xn	Level%FS	Level/IsMAX	Bree	k and Limit Action				2				

Figure 2 – Method design for cycle loading

Figure 3 – Testing with temperature chamber

Figure 4 – Dependences of force on deformation (elongation)

Figure 5 – Arcan test

Acknowledgement: This research work had been supported by the Cultural and Educational Grant Agency of the Slovak Republic (KEGA), project No. **KEGA 002TnUAD-4/2019**.

References

1. DIN 53835-13, Testing of textiles; determination of the elastic behaviour of textile fabrics by a single application of tensile load between constant extension limits. 1983.

2. KRMELA, J. Tire Casings and Their Material Characteristics for Computational Modeling. Scientific monograph. Czestochowa, Poland, 2017. ISBN 978-83-63978-62-4. http://krmela.wz.cz/kniha_obalka_en.png