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Abstract
Triangular lattice models for pattern formation by hard-core soft-shell particles at interfaces
are introduced and studied in order to determine the effect of the shell thickness and structure.
In model I, we consider particles with hard-cores covered by shells of cross-linked polymeric
chains. In model II, such inner shell is covered by a much softer outer shell. In both models,
the hard cores can occupy sites of the triangular lattice, and nearest-neighbor repulsion
following from overlapping shells is assumed. The capillary force is represented by the second
or the fifth neighbor attraction in model I or II, respectively. Ground states with fixed chemical
potential μ or with fixed fraction of occupied sites c are thoroughly studied. For T > 0, the
μ(c) isotherms, compressibility and specific heat are calculated by Monte Carlo simulations.
In model II, 6 ordered periodic patterns occur in addition to 4 phases found in model I. These
additional phases, however, are stable only at the phase coexistence lines at the (μ, T) diagram,
which otherwise looks like the diagram of model I. In the canonical ensemble, these 6 phases
and interfaces between them appear in model II for large intervals of c and the number of
possible patterns is much larger than in model I. We calculated line tensions for different
interfaces, and found that the favorable orientation of the interface corresponds to its
smoothest shape in both models.

Keywords: hard-core soft-shell particles, ordered structures, line tension, heat capacity,
chemical potential-concentration isotherms

(Some figures may appear in colour only in the online journal)

1. Introduction

The statistical-mechanical theory of molecular systems based
on interaction potentials of a Lenard-Jones type was devel-
oped in the second half of the last century [1–6]. Later, atten-
tion of scientists was shifted to more complex systems [7, 8]
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including solutions of colloids, proteins, etc, in particular
with interparticle interactions described by the potentials of
DLVO (Derjagin–Landau–Verwey–Overbeek) type [9, 10].
Recently, complex fluids containing nanoparticles of nontrivial
shape, structure and chemistry are intensively studied, because
they show fascinating properties and can find numerous prac-
tical applications.

In particular, colloid metal or semiconducting nanoparticles
find numerous applications in catalysis, optics, biomedicine,
environmental science, smart materials, etc. In these appli-
cations, it is important to prevent the nanoparticles from
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aggregation. In addition to traditional charge-stabilized col-
loids, recently another method of keeping desired separation
between the particles is becoming popular. Namely, various
types of core–shell particles are produced [11, 12]. In the
core–shell particles, the surface of the hard, typically metal,
magnetic or silica nanoparticle is covered by a polymeric
shell. The shell can be organic or inorganic, which strongly
influences interaction of the monomers with the solvent parti-
cles. The interactions with the solvent and the entropic effects
can lead to a shrunk or to a swollen shell for high or low
temperature. Such behavior was observed for Au@pNIPAM
core–shell particles [13]. The hybrid core–shell particles can
have both the cores and the shells of different and controlled
sizes and the softness of the shells can be controlled in partic-
ular by the crosslinking of the polymeric chains. The effective
interactions between the core–shell particles strongly depend
on the thickness, architecture and chemistry of the shells.
These properties can be tuned and adjusted to the desired effec-
tive interactions. In experimental studies, the core diameter is
typically 100–200 nm, but can be as large as ∼ 1μm, and the
shell-to-core ratio varies from about 1.1 to 3.5 [12, 14–16].
A convenient criterion separating ‘thin’ and ‘thick’ shells was
proposed in reference [17]. When the shells of second neigh-
bors of closely-packed particle-cores do not overlap, the shell
is thin, otherwise it is thick. The shell-to-core ratio separating
the thin and thick shells is

√
3.

Particularly important are monolayers of the core–shell par-
ticles on various interfaces [11, 12, 14, 18–24]. They can
find applications in plasmonic and nanophotonic systems,
anti-reflecting coating, pre-patterned substrates for growing
ordered structures or for sensing. At the interface of two liq-
uids, the polymeric shell becomes deformed. In addition, cap-
illary forces mediated by the interface appear. In the case of
particles with hydrophilic shells on oil–water interface, the
polymeric chains tend to be in contact with the aqueous rather
than with the oil phase and the core–shell particles look like a
fried egg [12, 14].

Experiments usually show hexagonal arrangement of the
particles at the interface, with the distance between the par-
ticles equal or larger than their diameter. Growing pres-
sure or density can lead to isostructural transition to the
hexagonal phase with a smaller unit cell [12, 15]. When
the density increases, the distance between the particles can
become smaller than the diameter of the particle, because the
chains surrounding different particles can interpenetrate, and
the shells can be deformed. The smallest possible distance
between the particles is equal to the hard-core diameter. In
some cases, however, different patterns, including clusters or
voids, are formed for intermediate density [11, 12, 14, 15]. The
presence of empty regions surrounding the hexagonal arrange-
ments of particles observed in some experiments [14], sug-
gest that the effective potential between the particles takes a
minimum for a certain distance between them.

Fully atomistic modeling of the pattern formation by the
core–shell particles is very difficult, but possible [25]. Unfor-
tunately, the atomistic modeling is restricted to a particular
example of the density of chains attached to the metallic core,
chain length, chemistry and architecture. Because very large

Figure 1. (a) The first five coordination spheres around the central
hard-core of the core–shell particle (black). (b) A cartoon showing
schematically the core–shell particle in model I. (c) A cartoon
showing schematically the core–shell particle in model II.

number of different types of shells is possible in experiment,
there is a need for a simplified, coarse-grained theory that
could predict general trends in pattern formation for vari-
ous ranges, strengths and shapes of the effective potential.
The particles can move freely in the interface area, but out-
of-plane mobility is reduced. For this reason, the particles
trapped at the interface can be modeled as a two-dimensional
system.

Lattice models allow for much simpler calculations and
faster simulations and it is much easier to gain a gen-
eral overview by considering a class of lattice models for
core–shell particles at interfaces. The study of lattice mod-
els for hard-core soft-shell particles at interfaces was initiated
in reference [26]. In the model considered in reference [26],
the lattice constant is equal to the hard-core diameter, and the
multiple occupancy of lattice sites is forbidden. Next, a soft
repulsion at small distances (nearest-neighbors) is followed by
an attraction at larger distances (second or third neighbors).
Exact results for the one-dimensional lattice model show good
agreement of the density-pressure isotherms with experiments
of reference [14]. At the same time, strong dependence of the
formed structures on the range of attraction is observed. A 2D
system was next modeled on a triangular lattice, with nearest-
neighbor repulsion and third-neighbor attraction [27]. Earlier,
the criticality of the system with the nearest neighbor repulsion
and the second neighbor attraction on a triangular lattice was
investigated in references [28, 29], motivated by experimental
results concerning gas adsorption on graphite as well as by a
purely theoretical interest. Attraction with longer-range and an
extended hard-core repulsion that resulted in more rich phase
behavior of the suggested models was considered in references
[30, 31].

To model the commonly observed hexagonal arrangement
of the particles and to allow for close-packing of spherical
cores of the particles at interfaces, one should choose a tri-
angular lattice model. For particles with nonspherical shapes,
the triangular lattice can still be suitable if the cores of the
particles form the hexagonal structure at close packing. For
more anisotropic shapes of the particles, the triangular lattice
is not suitable. For example, a square lattice should be cho-
sen for particles with cubic shapes. Here we limit ourselves
to spherical or nearly spherical particles and assume that the
particle cores occupy the sites of the triangular lattice. The lat-
tice constant a should be identified with the diameter of the
particle core (i.e. a ∼ 100–1000 nm depending on the partic-
ular experimental system). Multiple occupancy of the lattice
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sites should be forbidden, since the particle cores cannot over-
lap. The shell thickness can be varied almost continuously in
experiments. In the lattice model, however, the possible shell
thicknesses are restricted to the distances between the lattice
sites. To model thin shells with the shell-to-core ratio �

√
3,

repulsion between first neighbors should be assumed. For thick
shells, the repulsion should extend beyond the first neighbors.
The experimental case of the shell-to-core ratio ∼3 [14] cor-
responds to the diameter of the whole particle equal to the
distance between fifth neighbors (figure 1).

In this work we study in detail triangular lattice models
with nearest-neighbor repulsion and second-neighbor or fifth-
neighbor attraction. The repulsion and the attraction follow
from overlapping shells and from capillary forces, respec-
tively. In the first model, the shell is relatively thin. In the
second model, the inner shell is harder than the very soft outer
shell and the particles are significantly larger than in the first
model. We consider the two models in order to determine the
effect of the shell thickness and softness on the patterns formed
by the particles at interfaces. The models are introduced in
section 2. In the same section we discuss for what properties
of the core–shell particles their distribution on an interface can
be described by our models at least on a qualitative level. In
sections 3.1 and 4.1 we study the ground state (GS), i.e. we
determine the ordered phases in the two models for open sys-
tems at T = 0. In sections 3.2 and 4.2 we consider the GS with
fixed number of particles for model I and II respectively and
calculate the surface tension at different interfaces at T = 0. In
section 5, we determine the concentration−chemical potential
isotherms, specific heat, thermodynamic parameter (inverse
compressibility) and order parameter (OP) for T > 0. The last
section contains discussion and conclusions.

2. The model

The model under consideration is a lattice fluid with particles
occupying sites of a triangular lattice containing M lattice sites.
The lattice parameter a is equal to the diameter of the hard core
of the particles. Multiple occupancy of the lattice sites is for-
bidden, since the cores cannot overlap. Particles that occupy
the lattice sites on mutual coordination spheres of different
order interact with each other. The thermodynamic Hamilto-
nian of the open system with the chemical potential μ∗ is:

H =
1
2

kmax∑
k=1

zk∑
ki=1

M∑
i=1

J∗
k n̂in̂ki − μ∗

M∑
i=1

n̂i, (1)

where M is the total number of the lattice sites, ki enumerates
the sites of the kth coordination sphere around the site i, zk is
the coordination number, J∗k is the interaction constant for the
kth coordination sphere, n̂i is the occupation number (0 or 1)
and μ∗ is the chemical potential. The first five coordination
spheres are shown in figure 1(a).

We consider the simplest case of competing interactions
with nearest-neighbor repulsion (J∗

1 = J) and next nearest
(J∗2 = −J2J) or fifth (J∗

5 = −J5J) neighbors attraction. The
first case (model I) is appropriate for particles with thin, rel-
atively stiff shells (figure 1(b)). The second case (model II),

Figure 2. (a) The 3 sublattices of model I and their lattice vectors hi

for i = 1, 2, 3. (b) The 9 sublattices of model II and their lattice
vectors ei for i = 1, 2, 3. The sites belonging to the nth sublattice in
the unit cell are labeled n. Note that ei ⊥ hi.

corresponds to particles that in addition to the inner shell have a
much softer outer shell (figure 1(c)). In figure 1, the black cen-
tral circle represents the core of the particle. In the first model,
the diameter of the core–shell particle is

√
3 (in units of a), i.e.

model I represents particles with thin shells according to the
criterion of reference [17]. In the second model, the diameter
of the core–shell particle is 3, i.e. model II represents parti-
cles with thick shells, as experimentally studied for example
in reference [14].

As an energy unit we choose the strength of repulsion, J and
introduce the dimensionless chemical potential by μ = μ∗/J.
By Ja we shall denote the strength of the attraction in J units,
i.e. Ja = J2 or Ja = J5 for model I or II, respectively.

The nearest-neighbor repulsion is suitable for a coarse-
grained model of particles that have cross-linked polymeric
shells of a thickness comparable with the radius of the hard
core of the particle. The shells can overlap and be deformed
at some energetic cost, equal to J∗1 when the hard-cores of two
particles are in contact. We assume such shells for both models.

In the first model, the particle consists of the hard core
and of the above described shell. The attraction between the
second-neighbors follows from the effective capillary forces.
We assume that the effective potential takes the minimum
when the shells of the particles are in contact. In model I this
is the case when the second neighbors on the lattice are occu-
pied. Since the distance between the second neighbors is

√
3a,

the shell-to-core ratio in model I is
√

3.
In the second model, the inner shell of cross-linked chains is

followed by a much softer outer shell consisting of relatively
few polymeric chains. The chains attached to different parti-
cles can interpenetrate at much lower energetic cost than the
chains of the inner shells. The sum of all effective interactions
between the particles at the corresponding distances (second,
third and fourth neighbors on the lattice) can be neglected.
Finally, attraction between the fifth neighbors follows from the
capillary forces. Since the distance between the fifth neighbors
is 3a and we assume that the effective potential takes the min-
imum when the shells of the two particles touch each other, in
model II the shell-to-core ratio is 3.

In the next two sections we consider models I and II at zero
temperature and determine the GS first for an open system and
next for fixed number of particles. The equilibrium structures
correspond to the minima of the thermodynamic Hamiltonian
defined in equation (1) divided by the number of the lattice
sites. We denote the thermodynamic Hamiltonian per lattice
site in units of J by ω = H/(JM). We consider the two models
separately, starting from the first, simpler model.
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Figure 3. The ground states for models I and II, with the filled
circles representing the hard-cores of the particles. The structures
shown in the insets are stable in the regions separated by the
coexistence lines, as well as at these lines. For model I, Ja = J2. For
model II, Ja = J5, and in addition to the phases shown in the
diagram, the phases with c = 1/9 and c = 2/9 are stable along the
dashed line labeled I, the phases with c = 4/9 and c = 5/9 are
stable along the dash-dotted line labeled II and the phases with
c = 7/9 and c = 8/9 are stable at the line III (solid). The structure
of the phases stable along the coexistence lines I, II, and III is shown
at the cartoons below the (Ja,μ) diagram.

3. The GS of model I (thin shells)

3.1. The GS of an open system

The system with the interactions up to the second neighbors
can be split into three sublattices (see figure 2(a)) and the
allowed concentrations c (the fraction of the sites occupied by
the cores) of the GS are 0 (vacuum), 1/3 (one of the sublattices
is filled), 2/3 (two filled sublattices) and 1 (all sublattices are
filled).

At the vacuum state ω(0) = 0. At the concentration c =
1/3, the core of the particle has six next nearest neighbors and
ω(1/3) = −J2 − μ/3 because a third part of the lattice sites
is occupied and each interaction bond is taken into account
twice when calculating the total energy of the system. For
c = 2/3, ω(2/3) = 1 − 2J2 − (2/3)μ because each particle
core has three nearest and six next nearest neighbors. Finally,
ω(1) = 3 − 3J2 − μ for the dense system.

By comparing the above expressions for ω(c), we have
found that the vacuum state is stable for μ � −3J2, one of
the sublattices is filled for −3J2 � μ � 3 − 3J2, two sub-
lattices are filled for 3 − 3J2 � μ � 6 − 3J2 and the dense
state exists for μ � 6 − 3J2. The phase diagram is shown in
figure 3, and the structure of the ordered phases is shown in the
insets.

Because the ordered phases shown in figure 3 are uniquely
characterized by the concentration at T = 0, the phase with the
concentration n/3 will be referred to as ‘the c = n/3 phase’,

Figure 4. Panels (a) and (b): the lattice with PBC in both, the
vertical and the horizontal direction. The interfaces between the
vacuum and the c = 1/3 phases (dashed lines) are parallel to e1 in
(a) or to h1 in (b). The particles at the interface are connected by a
zig–zag or by a straight line in (a) or (b), respectively. Panel (c): a
small part of a simulation snapshot of model I for the fixed
concentration c = 395/1296 ≈ 0.3048 < 1/3 on the lattice 36 × 36
after 200 Monte Carlo steps for annealing and 7000 Monte Carlo
steps at T = 0.1. The hole of 37 empty sites has almost ideal
hexagonal shape with the sides parallel to the lattice vectors hi (the
image due to the PBC is not shown). The total energy of the system
is −1163J2 as compared to −1164J2 for the ideal configuration at
T = 0.

with a similar rule for model II, where ‘the c = n/9 phase’ will
denote the ordered phase in which c = n/9 at T = 0.

3.2. The GS for fixed number of particles and the line
tensions

When in the system with periodic boundary conditions (PBC)
the fixed number of particles N is different from M/3, 2M/3
or M, then an interface between two coexisting phases must
occur. For comparable, macroscopic areas of the coexisting
phases, the interface should have a form of a straight line. The
orientation of the spontaneously appearing interface is deter-
mined by the minimum of the energy of the whole system,
because at T = 0 the entropy plays no role. On the triangu-
lar lattice the distinguished orientations are parallel either to
the vectors ei or to the vectors hi (see figure 2).

Let us first consider the interface between the vacuum and
the hexagonal phase with c = 1/3. The interface parallel to the
direction e1 or h1 is shown in figure 4(a) (horizontal line) or in
figure 4(b) (vertical line), respectively.

For the interface lines parallel to the direction e1, each par-
ticle in the boundary row along the line of the first type looses
three interacting bonds with the second neighbors, a parti-
cle in the second row looses one such interacting bond, and
the period of the particle sequence along the interface line is
equal 3a. Thus, the direct calculation results in the line tension
σ = 2J2/3. For the interface parallel to hi, the particles in the
first boundary row loose two attracting bonds each and the dis-
tance between the particles is

√
3a. The line tension is equal

to σ = J2/
√

3. Thus, the most favorable are the lines parallel
to the lattice vectors hj.

When c is slightly larger from zero or slightly smaller than
1/3, then a droplet in the vacuum or a void in the close-packed
shells is created, with the shape determined by the minimum of
Hs =

∑
i σiLi +

∑
j Vj under the constraint of fixed area of the

droplet or the void. In the above expression, σi and Li are the
line tension and the length of the segments with the orientation
i, respectively and Vj is the energy of the jth vertex. When the
number of the particles is properly adjusted, the interface line
has a hexagonal shape, with the edges parallel to hj. By direct
calculation we can find that the line energy per the perimeter
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Figure 5. The interface lines (dashed) between the c = 1/3 and
c = 2/3 phases on a lattice with PBC conditions in directions e1
(horizontal) and in direction perpendicular to e1 (vertical). The PBC
are fulfilled at the left and right vertical lines that indicate the
identified columns of sites. (a) The two interfaces are parallel to e1
(horizontal lines). (b) The two interfaces are perpendicular to e1
(vertical lines).

Figure 6. The snapshot of model I for the fixed concentration
c = 1/2 on the 36 × 36 lattice, after 200 MC steps for annealing
and 1400 MC steps at T = 0.1. The two interfaces between the
c = 1/3 and c = 2/3 phases are clearly visible. In the top-right
corner, the two interfaces parallel to h1 can be seen on both sides of
the layer of the c = 1/3 phase and in the bottom-left and right
corners, the two interfaces on both sides of the layer of the c = 1/3
phase are parallel to h2 and to h3, respectively.

P = 6k
√

3 of a droplet or a void is Hs/P = (1 + (2k)−1)J2/
√

3
or Hs/P = (1 − (2k)−1)J2/

√
3, respectively, where k is the

length of the hexagon side in units of the distance between the
second neighbors. In the limit of large k, both values approach
the line tension for the line of the second type in accordance
with the orientation of the hexagon sides. In figure 4(c), a part
of the snapshot obtained in Monte Carlo (MC) simulations of
the system with c = 395/1296 at T = 0.1 is shown. One can
see that the sides of the hexagonal void are parallel to the lattice
vectors hi.

Let us focus on the interface between the hexagonal phase
of particles (c = 1/3) and the hexagonal phase of vacancies
(c = 2/3). The interfaces parallel and perpendicular to the lat-
tice vector e1 are shown in figure 5. The line tension for the
orientation of the interface parallel to the lattice vector e1 can
be directly calculated and is σ = 2J2/3. For the lines of the
second type, the structure of the left interface is different from
the structure of the right one (figure 5(b)). In the appendix, it
is shown that the line tension of both interfaces is the same,
σ = J2/

√
3. Notably, this line tension is equal to the line ten-

sion between the vacuum and c = 1/3 phases. The MC sim-
ulations for low temperature (T = 0.1) confirm the preference
of the interface lines parallel to hi. We can see that both types
of the interface are present on the snapshot in figure 6 and these
two different types of the interface occur on the opposite sides
of a layer of each phase.

Figure 7. The dimensionless grand potential per lattice site, ω, for
J5 = 1/2 and different concentrations, as a function of
dimensionless μ. Four phases can coexist at the dimensionless
chemical potential values −3/2, 3/2, 9/2. The structure of the
phases is shown in the cartoons in figure 3.

4. The GS of model II (thick shell)

4.1. The GS of an open system

For the system with the repulsion of the first neighbors and
attraction of the fifth neighbors, the unit cell contains 3 × 3
lattice sites and each of its nine sites has six nearest images in
the nearest unit cells (see figure 2(b)). Thus, these nine sites
generate nine sublattices and the successive filling of the
sublattices generates concentrations 0, 1/9, 2/9, . . . , 9/9. The
corresponding ordered patterns are shown in figure 3. We can
see the hexagonal phases with the lattice constant equal to the
diameter of the hard-core, of the inner-, or of the outer shell
for c = 1, c = 1/3 or c = 1/9, respectively, and the honey-
comb lattice or the lattice of rough clusters for c = 2/9 or
c = 4/9. The same structures, but with empty sites replac-
ing the occupied ones and vice versa are also present, giving
together 10 possible phases. Comparison of ω(c) for c = n/9
shows that for any fixed value of Ja only the concentrations
0, 1/3, 2/3 and 1 can be realized for some range of μ. The
coexistence lines on the (Ja,μ) phase diagram are the same as
in the previous case, but with Ja = J5 replacing Ja = J2. How-
ever, at the coexistence lines between the phases with c = n/3
and (n + 1)/3 with 0 � n � 2, two more phases, with c =
(3n + 1)/9 and c = (3n + 2)/9 are stable too (figure 3). For
fixed J5, these phases are stable for a single value of μ only and
coexist with the other two phases. The dependence of ω(c) on
μ for ten values of c and for J5 = 0.5 is shown in figure 7. One
can see that for three values of μ, namely μ = −3/2, 3/2, 9/2,
four out of ten lines intersect and that the value of ω(c) for the
remaining six values of c is larger. Similar behavior is found
for all values of J5. Thus, for fixed interaction strengths, four
phases coexist at the coexistence points shown in figure 3.

Note that in the absence of interactions between the second
neighbors, ω(c) = −c(μ+ 3J5) for c � 1/3. This is because
in the considered structures (see c � 1/3 in figure 3) the parti-
cles occupying one sublattice do not interact with the particles
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Figure 8. The ground state in a system with PBC containing
M = 9 × 9 lattice sites for fixed number of particles N = 18, for
model I (a) and model II (b).

Figure 9. The chemical potential—concentration isotherms for
model I at J2 = 0.5. The isotherms are shifted in the vertical
direction by 3 from each other for clarity. The isotherm at T = 0.4
(the lowest one) is not shifted.

occupying another one. For μ+ 3J5 = 0, ω(c) = 0 for all the
phases with c � 1/3. This degeneracy could be removed if the
interaction between the second neighbors were present. For the
other two cases of four-phase coexistence, the degeneracy has
similar origin.

4.2. The GS for fixed number of particles and the surface
tensions

In an open system, the GS (μ, Ja) of model I and II differ only
at the coexistence lines (see figure 3). For fixed number of par-
ticles, however, the stable structures can be completely differ-
ent in the two models. In particular, for N = M/9 an interface
between vacuum and the c = 1/3 phase is formed in model
I, whereas in model II the phase with c = 1/9 occupies the
whole lattice. Similarly, for N = kM/9 with k = 2, 4, 5, 7, 8,
two-phase coexistence with an interface occurs in model I
(see figure 5(b) for k = 4, 5), but in model II, the periodic
phase with c = 2/9, 4/9, 5/9, 7/9, 8/9,respectively, is present
(figure 3, bottom row). In figure 8, the ground states for c =
2/9 in model I and II are compared.

For N �= kM/9 with k = 0, 1, . . . , 9, the phase coexistence
of the two phases, the concentrations of which are the closest
to the mean concentration, occurs in model II. At the overall
concentration 0 < c < 1/9, the phase with the concentration
c = 1/9 coexists with the vacuum phase. The line tension is
σ = Ja/3 and Ja/

√
3 for the lines parallel to the vectors ei

and hi, respectively. Thus, the interface parallel to ei is more
preferable. Interestingly, in both models the orientation of the
interface is determined by the hexagonal lattice formed by the
particle cores, regardless of its orientation with respect to the
underlying triangular lattice, and the particles at the boundary
lie on a straight line.

When c is close to 0, the particles can form rhomboidal or
hexagonal clusters, in both cases with sides parallel to the unit
lattice vectors ei. By comparing the surface energies for poly-
gons of (approximately) the same area, we have found that the
hexagonal clusters are more preferable.

At a fixed concentration slightly below 1/9, hexagonal or
rhomboidal voids with the energies Eh = (6kh + 6)J5 or Er =
(4kr + 3)J5, respectively, can be created, where kh or kr are
the side length of the rhombus or hexagon side in units of the
fifth neighbors distance. A small rhomboidal void can be more
preferable than a hexagonal one. This is because a particle at
an acute angle of the rhomboidal void does not loose any bond,
while at obtuse angle of the rhomboidal or hexagonal void, it
looses an attractive bond. However, a direct comparison of the
rhomboidal and hexagonal voids is not possible, because the
numbers of sites on which small rhomboidal and hexagonal
voids can be created, cannot be the same. For a void with 4,
9 or 16 vacancies on the sublattice of the fifth neighbors, a
rhombus configuration is optimal, while a void with 7 or 19
vacancies will have the hexagonal shape. The energy differ-
ence is Er − Eh = 4kr − 6kh − 3 and a small rhomboidal void
with kr = 5 is more preferable as compared to the hexagonal
void with kh = 3. The energy difference is rather small (−J5)
and moreover the area of the rhombus corresponds to 36 sites
and is smaller from the hexagon area with 37 sites. The value
of 36–40 vacant sites on the sublattice of fifth neighbors can be
considered as a limiting value above which the hexagon config-
uration is more preferable. Irregular rhombuses and hexagons
with the sides parallel to the lattice vectors ei correspond to
local minima of the energy and may appear in simulations at
low temperature for smaller empty spaces.

In reference [27] the model of intermediate shell thickness
was considered, with attraction of the third neighbors instead
of the second (model I) or the fifth (model II) ones. The unit
cell contained four lattice sites and five phases with concentra-
tions 0, 1/4, 1/2, 3/4, 1 were present in the GS. The symmetry
of this intermediate model is similar to the symmetry of model
II; the vectors connecting the third neighbors are parallel to the
lattice vectors ei. All the results and conclusions concerning
the interface lines and preferable configurations for model II
remain valid for the intermediate model. In calculating the line
tensions, we need to take into account the distance 2a between
the third neighbors and the line tensions of model II have to be
multiplied by 3/2.

5. The thermodynamics of the system for T > 0

At low dimensionless temperatures T = kBT∗/J (where T∗ is
the absolute temperature and kB the Boltzmann constant), the
ordered states depending on the chemical potential or density
remain present. In this section we present the μ(c) isotherms,
isothermal compressibility, specific heat and order parameter
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Figure 10. The snapshot of model I for μ = 0 and T = 0.6, after 1000 MCS for equilibration and 2000 simulation MCS. c = 435/1296 and
η ≈ 0.98. There are 427 occupied and 5 vacant sites (marked in yellow) on the main sublattice and 8 occupied sites (marked in red) on the
other two sublattices.

obtained for both models by MC simulations for Ja = 0.5 and
a range of T. The metropolis importance sampling simulations
were performed for the system of 96 × 96 lattice sites with
PBC. 1000 Monte Carlo simulation steps (MCS) were used
for equilibration. The subsequent 10 000 MCS were used for
calculating the average values.

5.1. Model I (thin shells)

The concentration isotherms for model I are shown in figure 9.
On the isotherms for T � 0.7 it is clearly seen that there are no
simulation points on large intervals of the concentration. These
dotted horizontal lines correspond to a coexistence of two
ordered phases, namely vacuum and c = 1/3, next c = 1/3
and c = 2/3 and finally, c = 2/3 and dense. A few points in
these intervals correspond to metastable states that occasion-
ally can be realized in the course of simulation. The concentra-
tion intervals corresponding to the stable phases increase with
temperature due to thermally induced structural defects. Some
points at the ends of the stable phases can also correspond
to metastable (superheated or supercooled) states. Figure 10
demonstrates the defects in the c = 1/3 phase in model I at
fixed μ = 0 and T = 0.6, with the average concentration close
to 1/3. One sublattice is completely occupied in the GS at this
value of the chemical potential. Thermal fluctuations result
in a few vacancies on the main sublattice and a few occu-
pied sites on the other ones. The number of defects increases
with increasing temperature and/or variation of the chemical
potential.

At low temperatures, small variations of the concentra-
tion at large variation of the chemical potential are observed
in the ordered phases, signaling large values of the ther-
modynamic factor χT = c(∂(βμ)/∂c)T. The thermodynamic
factor is inversely proportional to the isothermal compress-
ibility κT = (∂c/∂p)T/c (where p is pressure) that in turn is
proportional to the concentration fluctuations,

〈(N − 〈N〉)2〉
〈N〉 = χ−1

T = TcκT. (2)

Figure 11. The inverse thermodynamic factor versus concentration
for model I at J2 = 0.5. The curves are shifted in the vertical
direction by 3n for clarity. The curve at T = 0.4 (the lowest one) is
not shifted.

In the above, the angular brackets 〈. . .〉 mean the ensemble or
MC simulation average. Thus, the concentration fluctuations
are suppressed in the most ordered states and can reach large
values at the phase boundaries (figure 11).

The maxima of the compressibility (minima of the thermo-
dynamic factor) can serve as an indicator of the phase transi-
tions in the finite system. Another indicator of the phase tran-
sitions is the energy fluctuation or the specific heat that in the
dimensionless form can be written as

cμ =
C∗
μ

kB〈N〉 =
1

kB〈N〉

(
∂E∗

∂T∗

)
μ

=
〈(E − 〈E〉)2〉

〈N〉T2
, (3)

where C∗
μ is the heat capacity with constant chemical potential

and E = E∗/J is the dimensionless system energy. Again, the
energy fluctuations are suppressed in the most ordered states,
and are large at the phase transition points (figure 12). The
concentration dependence of the heat capacity is qualitatively
changed at the temperature 0.93 when the minima disappear

7



J. Phys.: Condens. Matter 32 (2020) 405102 V S Grishina et al

Figure 12. The concentration dependence of the specific heat for
model I at J2 = 0.5. The curves are shifted in the vertical direction
by 3n for clarity. The curve at T = 0.4 (the lowest one) is unshifted.

at concentrations close to 1/3 and 2/3. Thus, Tc = 0.93 can be
considered as the critical temperature. This conclusion is sup-
ported by the behavior of the concentration isotherms (figure 9)
and concentration fluctuations (figure 11).

The ordered states of the system are characterized by the
order parameter (OP) that can be calculated as

η = 3〈N1〉/M − 3〈(N2 + N3)〉/2M at c < 1/2 (4)

or

η = 3〈(N1 + N2)〉/2M − 3〈N3〉/M at c > 1/2, (5)

where N1 � N2 � N3 are the numbers of the particles that
occupy the corresponding sublattice. These numbers are cal-
culated in the simulation process and averaged over all the MC
steps. The OP is close to 1 if one or two sublattices are almost
completely occupied, while the remaining two or one, respec-
tively, are almost empty. If the sublattices are almost equally
occupied, the OP is close to zero.

The most ordered structure occurs for μ ≈ 0 or μ ≈ 3, i.e.
in the center of the stability region of the c = 1/3 or c = 2/3
phases (figure 13). The OP decreases for increasing T and/or
for μ departing from μ = 0 or μ = 3 and experiences large
fluctuations at the critical isotherm (Tc ≈ 0.93) for the aver-
age concentration c = 1/3 or 2/3. The OP at the temperatures
above the critical one remains different from zero. It is partially
due to the calculation procedure and partially due to a more
complicated phase behavior of the model in this temperature
range [28, 29]. As we are interested in the ordered patterns and
the model is valid for a limited range of T, we do not study the
high-T properties in more detail.

5.2. Model II (thick shells)

The concentration isotherms for model II (figure 14) look very
similar to that for model I, although the critical temperature is a
little bit higher (Tc ≈ 1.10). This is the result of more space for
the cores of the particles in model II, where the second, third
and fourth neighbors can be occupied at no energetic cost. No

Figure 13. The order parameter (equations (4) and (5)) for model I
at J2 = 0.5 versus chemical potential.

Figure 14. The concentration isotherms for model II at J5 = 0.5.
The isotherms are shifted in the vertical direction by 3 from each
other for clarity. The isotherm at T = 0.4 (the lowest one) is not
shifted.

indication of ordered phases except from c = 1/3, 2/3 or 1 is
seen in these isotherms.

Again, the heat capacity has minima at the concentrations
0, 1/3, 2/3 and 1 (figure 15) that confirms the appearance in
the open system of these phases only. The same conclusion
follows from the concentration fluctuation isotherms and the
OP behavior (they are both similar to figures 11 and 13 and
are not shown here). The character of fluctuations in both sys-
tems is similar. The other ordered phases are hidden in the
horizontal segments of the μ(c) isotherms. Each dotted line
segment in figure 14 represents several phase transitions. The
first segment represents the sequence: disordered dilute gas
phase → c = 1/9 phase → c = 2/9 phase → c = 1/3 phase.
The second segment represents the sequence: c = 1/3 phase
→ c = 4/9 phase→ c = 5/9 phase→ c = 2/3 phase. Finally,
the third segment corresponds to the sequence: c = 2/3 phase
→ c = 7/9 phase → c = 8/9 phase → condensed phase with
voids. Thus, four coexisting phases at particular values of the
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Figure 15. The concentration dependence of the heat capacity for
model II at J5 = 0.5. The curves are shifted in the vertical direction
by 3n for clarity. The curve at T = 0.4 (the lowest one) is not shifted.

chemical potential in the ground state evolve into succession
of phase transitions while the lattice concentration is growing
at T > 0. For different μ values, ω takes local minima for the
phases absent in model I.

When the number of particles N is fixed at low T, either a
particular phase exists or two phases with the densities clos-
est to N/M coexist and an interface between them occurs, as
in the GS. In 2D systems there exists a long-wavelength inter-
face instability due to capillary waves [32–35]. This instabil-
ity leads to rich variety of different patterns when T increases
and N is fixed, because many ordered patterns are metastable
in model II. For example, at c = 1/6, T = 0.5 and N fixed,
large dynamical fluctuations in the system exist along the MC
simulation trajectory. In the sea of the c = 1/9 phase, islands
of the phases c = 2/9, c = 1/3 and even vacuum in different
transient configurations may occur.

6. Discussion and conclusions

The purpose of our study was determination of the effect of the
shell thickness and softness on patterns formed by core–shell
particles adsorbed at an interface between two liquids. We
assumed that when the shells of the two particles touch each
other, an effective attraction between the particles is induced
by capillary forces, as suggested by the results of reference
[14]. We compared patterns formed in model I, where the
hard-core of the particle is covered by a relatively stiff shell,
with patterns formed in model II, where the above mentioned
inner shell is surrounded by a much softer outer shell and the
whole particle is bigger. The shell thickness is temperature-
independent in our models and the results can be valid for a
limited range of T, so that no transition in the shell structure
takes place.

The phase diagrams of both models in the tempera-
ture—chemical potential variables are very similar. At low T,
dilute gas or closely packed cores appear for very small or very
large values of the chemical potential, respectively. For inter-
mediate values of μ, a hexagonal lattice of particles or holes,

with the lattice constant equal to the diameter of the inner shell,
and with concentrations c ≈ 1/3 or c ≈ 2/3, respectively, can
be formed. Only at three values of the chemical potential, cor-
responding to the phase coexistence (the horizontal segments
of the μ(c) isotherms in figures 9 and 14), the properties of the
two models are different. The transition between the c = 0 and
c = 1/3 phases in model I is replaced by the sequence of the
transitions c = 0 → c = 1/9, next c = 1/9 → c = 2/9, and
c = 2/9 → c = 1/3 in model II. In the c = 1/9 and c = 2/9
phases, the cores occupy sites of the hexagonal lattice with
the lattice constant equal to the diameter of the outer shell and
the honeycomb lattice, respectively (see figure 3 for the struc-
ture of the phase referred to as ‘c = n/9 phase’). All these
transitions occur at the same value of μ and are hidden in the
horizontal segments in figure 14. Similarly, the other two hori-
zontal segments in figures 9 and 14 correspond to the transition
between two phases in model I and to a sequence of 3 phase
transitions in model II.

The hexagonal lattices with different lattice constants are
present in many experimental systems [12, 14, 18–23]. The
honeycomb lattice was obtained experimentally by sequential
deposition of Au–Au and Ag–Au PNIPAM particle monolay-
ers [36], and the clusters were seen in reference [14].

From our results it follows that the shape of the isotherm
can be very misleading, when particular patterns can occur for
very small intervals of μ and the steps on the isotherms are
hardly visible. Even when the additional phases are present
for very small intervals of μ, or as in model II for single values
of μ, they strongly influence the structure for fixed number of
particles.

When at low T the number of particles is fixed, the patterns
formed in models I and II are the same only for the values of
the concentration c corresponding to stability of the phases of
model I. For large intervals of c, patterns formed in models I
and II are different. In particular, for the whole interval 0 <
c < 1/3, an interface between the dilute gas and the c = 1/3
phase occurs in model I. In model II, the interface is formed
between the dilute gas and the c = 1/9 phase for 0 < c < 1/9,
next, between the c = 1/9 and c = 2/9 phases for 1/9 < c <
2/9, and finally between the c = 2/9 and c = 1/3 phases for
2/9 < c < 1/3.

The line tension between the ordered phases depends on the
orientation of the interface. We have found that the line tension
takes the smallest value for the interface parallel to the side of
the hexagon in all the hexagonal phases in both models and in
the model of reference [27]. For this orientation, the boundary
particles lie on a straight line, in agreement with reference [14].
This result is independent of the orientation of the hexagonal
structure with respect to the underlying lattice.

Let us discuss in more detail the interface between the vac-
uum and the hexagonal phase with c = 1/3 or c = 1/9 in
model I or II, respectively. In both models, the low-density
hexagonal phase corresponds to closely packed shells, since
the shell diameter is

√
3 and 3 in model I and II, respectively.

Physical significance has the hexagonal lattice formed by the
particle cores. Lattice vectors of this lattice are parallel to hi

or to ei in model I or II, respectively (figure 2). Thus, the inter-
face parallel to ei is parallel to the lattice vector of the ordered

9



J. Phys.: Condens. Matter 32 (2020) 405102 V S Grishina et al

structure formed by the particle cores in model II. The inter-
face parallel to hi, is in turn parallel to the lattice vector of the
ordered structure formed by the particles in model I. Notably,
we have found that the stable interface is parallel to hi or to
ei in model I or II, respectively. This means that regardless of
the shell thickness and softness, the orientation of the stable
interface is determined by the lattice vector of the hexagonally
packed shells. The physical lattice formed by the particle cores
has different orientation with respect to the underlying lattice
in the two lattice models. This confirms that our result for the
orientation of the stable interface is not an artifact of the lattice
model. Our results agree with experiments [14], where a few
configurations of the low-density hexagonal phase at coexis-
tence with voids are shown. All the interface lines are parallel
to the lattice vector of the hexagonal lattice of particles and
two interfaces meet at vertices with the angles 60◦ or 120◦.
Large voids have a hexagonal shape, while rhombus geometry
can be identified for small voids, in very good agreement with
our predictions. At the coexistence between the c = 1/3 and
c = 2/3 phases in model I, the hexagonal structure of parti-
cles coexists with the hexagonal structure of vacancies. In this
case the stable interface is parallel to the lattice vectors of the
two lattices—one formed by the particles and the other one
formed by the voids. Note that the particles at the stable inter-
face of the hexagonal phase lie on a straight line for thin and
thick shells, independently of the shell softness. On the other
hand, at the interface associated with a larger line tension, the
particles or vacancies lie on a zig–zag line. We conclude that
the smoothest interface is the most stable one.

Our results show that particles with composite shells con-
sisting of a stiff inner shell and a soft outer shell can form com-
plex patterns, including the honeycomb lattice and periodically
distributed clusters, in addition to the common hexagonal lat-
tices with smaller and larger unit cells. Modified model II, with
the second-, third- and fourth neighbor interactions represent-
ing modifications of the structure of the composite shell of the
particles, could lead to an expansion of the stability region of
the additional phases from a single value to an interval of μ.
The horizontal segment in figure 14 could evolve into 3 seg-
ments separated by steps. The question of the sensitivity of
the shape of the isotherms to the effective interactions follow-
ing from the structure of the composite shell requires further
studies. This is the goal of our future work.
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Appendix. Line tension between the c = 1/3 and
c = 2/3 phases

Let us consider coexisting ordered phases in the case of no
mirror symmetry of the unit cell of the periodic pattern. The

Figure A1. Cartoons showing the coexisting c = 1/3 and c = 2/3
phases, with the two interfaces parallel to h1. PBC are assumed in
both directions and the columns marked by the thin solid lines
should be identified. Panels (a) and (b) correspond to the system
shown in figure 5, but with the width in the horizontal direction,
W �= np = 4 × 3, as discussed in the text. In panel (a), the width of
the system in direction e1 is W = 4p + 1 = 13 when the column of
lattice sites (in red color) is added. Note that after inserting these
lattice sites, the right interface becomes identical with the left one.
In panel (b), one column of the lattice sites (in light blue) is removed
and W = 4p − 1 = 11. After removing these lattice sites, the left
interface becomes identical with the right one.

two interfaces that appear in the system with PBC can differ
from each other, as shown for the c = 1/3 and c = 2/3 phases
by the dashed lines in figure 5(b). Different structure of the two
interfaces might lead to different line tensions.

Here we focus on the coexisting c = 1/3 and c = 2/3
phases and consider the two interfaces parallel to the vector h1

in the system with PBC (figure 5(b)), in order to calculate the
two line tensions. The unit cell in the two considered phases
consists of p = 3 sites in direction e1 and 2 sites in direction
h1 (figure 4). In direction h1, the distance between subsequent
layers of the lattice sites is

√
3/2. In the following consider-

ations, it will be more convenient to consider the number of
layers L∗ = 2L/

√
3 in the direction parallel to the interface and

the rescaled line tension σ∗ = σL/L∗.
In a system with PBC in both directions, we can write the

grand potential in J-units in the form

Ω = ωL∗np+ΔΩ (6)

where integer n = n1 + n2 is the number of the unit cells of the
two phases in one row (parallel to e1), and ΔΩ is the excess
grand potential. Ω can be easily calculated for the consid-
ered geometry of the system with the help of equation (1). By
equating equation (6) with the general thermodynamic relation

Ω = ωM + (σ∗
1 + σ∗

2)L∗, (7)

where M = L∗W is the number of the lattice sites in the system
and W = W1 + W2 is the number of the lattice sites in direction
e1, we obtain

(σ∗
1 + σ∗

2)L∗ = ωL∗(np− W) +ΔΩ. (8)
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We took into account that the line tensions at the two interfaces
might be different. In general, W might be different from an
integer number of periods p, when a direct contact of the unit
cells of the coexisting ordered phases would be associated with
a significant increase of energy. In such a case, some excess
or depletion of the number of particles at the interface might
appear. In thermodynamic limit, however, the densities of the
coexisting phases remain unchanged.

In order to determine the structure of the interface and to
find the line tension corresponding to the equilibrium, we cal-
culate RHS of equation (8) for W = np, as well as for W �= np.
For W = np and L∗ = 2 we obtain, using equation (1) with
PBC and figure 5(b) the result

(σ∗
1 + σ∗

2)2 = ΔΩ = 2Ja. (9)

When one additional zig–zag column of alternating empty and
filled sites is inserted between the c = 2/3 phase on the left
and c = 1/3 phase on the right-hand side (see figure A1), then
both interfaces have the same structure as the left interface in
figure 5(b). On the other hand, when such a zig–zag column
at the left interface is removed (see figure A1), both interfaces
have the same structure as the right interface in figure 5(b).

In the first case we have one extra particle and in the sec-
ond case, one less particle in the system with L∗ = 2 com-
pared to the case of W = np. The excess grand potential in the
first case is ΔΩ+ = −μ+ 1 − 3Ja + 2Ja, because the inserted
particle repels its first neighbor and 3 attractive interactions
are added compared to ΔΩ given in equation (9). In the sec-
ond case (W = np − 1) we have ΔΩ− = μ− 1 + 3Ja + 2Ja,
because with the removed particle, the first-neighbor repulsion
and the attraction with 3 second neighbors disappear.

Taking into account that at the coexistence between the two
phases ω = −1 and μ = 3(1 − Ja), we obtain from (8) and the
above expressions for ΔΩ±

4σ∗
1 = −2ω +ΔΩ+ = 2Ja (10)

and
4σ∗

2 = 2ω +ΔΩ− = 2Ja. (11)

All these results give σ1 = σ2 = Ja/
√

3.
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