Доклады Академии Наук СССР 1953. Том XCI, № 3

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Действительный член АН БССР М. А. БЕЗБОРОДОВ и В. Л. ЧЕНАКАЛ

химический состав цветных стекол м. в. ломоносова

Ведущееся за последние годы изучение научного наследия М. В. Ломоносова и, в частности, его «Лабораторного журнала» и «Лабораторных записей», относящихся к 1751—1752 гг., позволило составить некоторое представление о масштабах его исследований по химии и технологии стекла, о методах его научных работ, о сырьевых материалах для изготовления стекол различных составов и свойств, об изготовлении и применении им красителей для получения цветных стекол различного назна-

чения (1).

Было показано, что М. В. Ломоносов вел систематическую поисковую работу по изготовлению рубиновых стекол, окрашенных соединениями золота, рецептура и технология производства которых была в то время утрачена (2). В его «Лабораторном журнале» находятся записи 70 шихт опытных стекол, которые содержат в своем составе соединения золота ((3), стр. 371—438). Как известно, Ломоносов провел в течение трех с половиной лет (1749—1752 гг.) 2184 опытных плавки и разработал богатейшую палитру разнообразных цветных стекол, которую позже использовал для изготовления мозаичных картин, для производства посуды, облицовочных плиток, бисера, пронизок, стекляруса, ювелирных камней, галантерейных вещей и многих других изделий.

Все наши небольшие знания о составе и свойствах ломоносовских стекол основывались до сих пор лишь на данных его лабораторных записей. Большой научный и практический интерес, однако, представляет непосредственное экспериментальное изучение химического состава и свойств стекол Ломоносова на образцах, сохранившихся до нашего

времени.

В настоящей статье излагаются первые результаты ведущегося авто-

рами лабораторного исследования цветных стекол Ломоносова.

В табл. 1 приводятся анализы семи цветных стекол Ломоносова в весовых процентах. Образцы №№ 1—3 и 5—7 представляют собой мозаичные стекла, применявшиеся Ломоносовым для изготовления мозаичных картин и, в частности, при создании «Полтавской баталин». Стекло № 4 — один из образцов золотого рубина Ломоносова. Было высказано предположение, что рубиновые стекла, окрашенные соединениями золота, он использовал для изготовления изделий алого и гранатового цветов — запонок, подвесок к серьгам, стекляруса и т. п. (4).

В табл. 2 представлены те же стекла №№ 1—3 и 5—7, пересчитанные на молекулярные составы; в левой половине таблицы находятся стеклообразующие компоненты (SiO₂, CaO, PbO, MgO, ZnO, K₂O и Na₂O),

в правой — красители (CuO, Cu₂O, Fe₂O₃, MnO, Sb₂O₃).

Сопоставление анализов мозаичных стекол позволяет отнести их по содержанию главнейших компонентов к трем группам:

609

Химический состав цветных стекол М. В. Ломоносова (в вес. процентах)*

Окислы в %	№ 1 оранжево- красное	№ 2 сургучно- красное	№ 3 светлой охры	№ 4 желтовато- палевое	№ 5 голубое	№ 6 синее	№ 7 сиремево- синее
SiO ₂	36,93 0,08 3,28 43,59 1,64	21,98 0,91 0,14 60,84 0,82 3,77	24,84 4,02 1,34 63,85 0,33 нет	60,53 Много [Содер- жится Au]	40,24 0,63 3,40 40,82 0,38 1,98	66,44 1,64 3,60 2,42 0,43	38,82 2,95 6,84 37,91 0,52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6,19 нет 6,90 0,95 99,56	9,45 1,64 99,55	нет 3,19 2,54 нет 100,11		1,20 — HET 7,92 3,01 99,58	9,80 - 15,08 1,09 100,50	1,21 HeT 1,88 9,23 0,20 99,56

^{*} Аналитики А. С. Запорожец (стекла №№ 1, 4, и 5) и Т. В. Терентъева (стекла №№ 2, 3, 6 и 7)

Таблица 2 Молекулярный состав мозаичных стекол М. В. Ломоносова

№№ ctekoл	SIO ₂	CaO	Рьо	MgO	ZnO	K ₂ O	Na ₂ O	CuO	Cu ₂ O	Fe ₂ O ₃	MnO	Sb ₂ O
6	6,00	0,34	0,05	0,05	-	0,86	0,09	0,65		0,05	-	_
1 5 7	6,00 6,00 6,00	0,57 0,55 1,15	1,90 1,64 1,62	0,09 0,13	0,19 0,22 —	0,73 0,75 0,93	0,14 0,45 0,04	0,13	0,42	0,005 0,04 0,17	0,17	0,07
3 2	6,00 6,00	0,35 0,41	4,20 4,46	0,12 0,33	0,75	0,39 0,28	=	_	1,08	0,37 0,09		0,16

Стекло № 6 принадлежит к группе щелочных известково-кремнеземных стекол, в которых окись свинца занимает подчиненное положение. Стекла №№ 1, 5 и 7 — щелочные свинцово-известково-кремнеземные стекла, в которых существенную роль играет окись свинца.

Стекла №№ 2 и 3 — свинцово-кремнеземные стекла; в них щелочи

и окись кальция играют второстепенную роль.

Составы шихт опытных стекол, находящиеся в «Лабораторном журнале», а также пометки Ломоносова в его «Лабораторных записях» показывают, что он применял способ «двухступенной», раздельной («дифференцированной») варки стекол. Сначала он спекал фритту, а затем добавлял к ней красители и плавил получившуюся смесь.

Можно высказать предположение, что стекла первой и второй группы были изготовлены на основе «белой фритты прозрачной из белого песку и поташу». Третья группа стекол, повидимому, была изготовлена на основе «желтой фритты из сурику и желтого песку» ((3), стр. 437).

Зная сырьевые материалы, которые были в распоряжении Ломоносова, можно высказать некоторые догадки, какими из них он воспользовался для получения изучавшихся нами образцов. Так, например, для окрашивания стекла № 1 в оранжево-красный цвет он мог применить медный купорос в восстановительной среде в сочетании с «животной щелочью» (аммиаком). Окись цинка он мог ввести через «белый купорос» (сернокислый цинк). Для получения более яркой красной окраски в стекле № 2, по сравнению со стеклом № 1, он увеличивал содержание в шихте белого купороса и медных соединений. Окись кальция попадала в стекла либо за счет примесей в потаще, либо вводилась специально в шихту известью или мелом. Непрозрачности («глухоты») Ломоносов добивался в ряде стекол применением сурьмяных соединений — возможно, «сурьмяной киноварью», т. е. сернистой сурьмой ((3), стр. 401). Так, например, непрозрачность (глухота) стекол №№ 3 и 7 достигнута именно введением сурьмы, как это видно из анализа. Окраска стекла № 3 обусловлена, очевидно, окисью железа за счет применения железного купороса или железного крокуса в окислительной среде, например путем добавки селитры. Окраска стекол №№ 5 и 6 обязана в большей степени соединениям меди, упоминавшимся ранее, но в данном случае в окислительной среде — например в сочетании с селитрой.

Окраска стекла № 7, объясняющаяся наличием соединений железа и марганца, могла быть достигнута применением «пьемонтской магнезии» — двойным карбонатом магния и марганца — находившейся в распоряжении Ломоносова в сочетании с медным купоросом, а также селит-

рой для создания окислительной среды.

Особое положение занимает стекло № 4. Оно характерно своей двойной окраской: оно синее в проходящем свете и желтоватое («палевое») в отраженном. Такими свойствами, как известно, отличаются стекла, в которых окраска зависит от дисперсных частиц металла, находящегося в коллоидальном состоянии. В «Лабораторном журнале» Ломоносова среди стекол, окрашенных соединениями золота, находится именно такое стекло — № 9, похожее на наш образец № 4 ((³), стр. 403). Анализ показал содержание золота в этом стекле. Отсутствие рубиновой окраски в данном случае объясняется тем, что стекло не было подвергнуто нормальному процессу «наводки».

Таким образом, экспериментально подтверждено заключение о том, что Ломоносов разработал рецептуру «золотого рубина» и изготовлял

рубиновые стекла, окрашенные соединениями золота (2).

При объяснении окраски стекол были упомянуты лишь отдельные красители и только некоторые из компонентов, обусловливающие данную окраску. Следует, однако, считаться с тем, что то или иное свойство стекла, в данном случае окраска его, обусловливается всем составом его в целом, всем количественным и качественным наличием компонентов, а не каким-либо отдельным фактором.

Начатое авторами изучение химического состава и свойств стекол

Ломоносова продолжается.

Музей М. В. Ломоносова Академии наук СССР (Ленинград) и Белорусский политехнический институт им. И. В. Сталина (Минск)

Поступило 25 IV 1953

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Безбородов, М. В. Ломоносов и его работа по химии и технологии силикатов, М.— Л., 1948, стр. 65—138. ² М. А. Безбородов. ДАН. 51, № 7 (1946). ³ М. В. Ломоносов, Полн. собр. соч. 2. Труды по физике и химии, М.— Л., 1951. ⁴ М. А. Безбородов. Природа. № 1, 74 (1947).