УДК 536.666:544.344.015.2.014

О. И. Салычиц, ассистент (БГТУ); С. Е. Орехова, доцент (БГТУ)

КИНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ТЕПЛОВЫЕ ЭФФЕКТЫ РЕАКЦИЙ ФАЗООБРАЗОВАНИЯ ТВЕРДЫХ РАСТВОРОВ АЛЮМИНАТОВ И АЛЮМОСИЛИКАТОВ В СИСТЕМАХ MgO (MnO, FeO, CuO, Cu₂O, ZnO) – Al_2O_3 – SiO_2

Методом дифференциальной сканирующей калориметрии (ДСК) определены тепловые эффекты реакций фазообразования твердых растворов алюминатов $Mg_{1\rightarrow x}$ - 3_x Al $_2$ O $_4$ (0,10 < x < 0,75) и алюмосиликатов $Mg_{2\rightarrow y}$ - 3_y Al $_4$ Si $_5$ O $_{18}$ (0,5 < y < 1,5) в системах MgO (ЭО, 3_2 O) – Al_2 O $_3$ – SiO_2 (Э – Mn (II), Fe (II), Cu (I, II) и Zn). Изучена кинетика процессов фазообразования твердых растворов алюминатов $Mg_{1\rightarrow x}$ - 3_x Al $_2$ O $_4$ и алюмосиликатов $Mg_{2\rightarrow y}$ - 3_y Al $_4$ Si $_5$ O $_{18}$ в исследуемых системах и рассчитаны значения энергий активации данных процессов. Проведено сопоставление кинетических характеристик и тепловых эффектов реакций фазообразования твердых растворов алюминатов и алюмосиликатов в системах MgO (MnO, FeO, CuO, Cu $_2$ O, ZnO) – Al_2 O $_3$ – SiO_2 (Э – Mn (II), Fe (II), Cu (I, II) и Zn).

Введение. Диаграмма состояния системы $MgO - Al_2O_3 - SiO_2$ является физико-химической основой для разработки большого числа керамических и огнеупорных материалов, в ряду которых особое место занимают керамические кордиеритсодержащие материалы с низким температурным коэффициентом линейного расширения (ТКЛР) и высоким удельным объемным электрическим сопротивлением (ρ_V). Однако повышенная пористость (Π_0) , недостаточные механическая прочность ($\sigma_{\text{изг}}$) и плотность ($\rho_{\text{каж}}$) керамики на основе алюмосиликата магния $Mg_2Al_4Si_5O_{18}$ (кордиерита), высокая энергоемкость производства (1350-1450°C) ограничивают ее применение.

С целью расширения возможностей использования керамических алюмосиликатных материалов нами проведено исследование влияния модифицирования магнийалюмосиликатной системы, которая соответствует со-

ставу $2\text{MgO}\cdot2\text{Al}_2\text{O}_3\cdot5\text{SiO}_2$, на свойства полученных на ее основе материалов [1–3]. Синтезированы керамические материалы при частичном и полном эквимолекулярном замещении MgO в составе $2\text{MgO}\cdot2\text{Al}_2\text{O}_3\cdot5\text{SiO}_2$ на оксиды металлов $9\text{O}, 9_2\text{O}$ (9-Mn (II), Fe (II), Cu (I и II), Zn), электронные конфигурации которых отличаются разным числом электронов на d-подуровне.

Таблица 1 Свойства керамических материалов, полученных на основе систем MgO (MnO, FeO, CuO, Cu₂O, ZnO) – Al_2O_3 – SiO_2

Система	Температура синтеза, °С	ТКЛР · 10 ⁶ , К ⁻¹	ρ _V , Ом∙см	σ _{изг} , МПа	$ ho_{\text{каж}} \cdot 10^{-3},$ $ ho_{\text{КГ/M}}^3$
$MgO - Al_2O_3 - SiO_2$	1350-1450	1,0-3,0	$10^9 - 10^{10}$	50,0	1,85–2,10
$MgO (MnO) - Al_2O_3 - SiO_2$	1050-1100				
$MgO (FeO) - Al_2O_3 - SiO_2$	1150-1200				
$MgO (CuO) - Al_2O_3 - SiO_2$	1100-1150	0,7–2,2	$(0,3-3,5)\cdot 10^{11}$	58,9–91,5	2,45-2,91
MgO (Cu2O) - Al2O3 - SiO2	1100-1150				
$MgO(ZnO) - Al_2O_3 - SiO_2$	1150-1200				

Отсутствие в литературных источниках термодинамических характеристик твердых растворов алюминатов $Mg_{1-x} \mathcal{I}_x Al_2 O_4$ и алюмосиликатов $Mg_{2-y} \mathcal{I}_y Al_4 Si_5 O_{18}$ существенно усложняет проведение термодинамического анализа и не позволяет определить термодинамическую возможность реакций фазообразования в исследуемых модифицированных магнийалюмосиликатных системах MgO (MnO, FeO, CuO, Cu_2O , ZnO) – Al_2O_3 – SiO_2 .

Все вышесказанное обусловливает актуальность и необходимость проведения исследований, цель которых — определение стандартных теплот образования твердых растворов алюминатов $Mg_{1-x} \mathcal{I}_x Al_2 O_4$ и алюмосиликатов $Mg_{2-y} \mathcal{I}_y Al_4 Si_5 O_{18}$ в модифицированных магнийалюмосиликатных системах MgO (MnO, FeO, CuO, Cu₂O, ZnO) — $Al_2 O_3$ — SiO_2 и комплексное изучение кинетических характеристик и тепловых эффектов реакций фазообразования $Mg_{1-x} \mathcal{I}_x Al_2 O_4$ и $Mg_{2-y} \mathcal{I}_y Al_4 Si_5 O_{18}$ в системах MgO (MnO, FeO, CuO, Cu₂O, ZnO) — $Al_2 O_3$ — SiO_2 .

Основная часть. Составы исследуемых композиций (2–X)MgO-XЭO(Э₂O)-2Al₂O₃-5SiO₂ (X = 0; 0,5; 1; 1,5; 2), где Э – Mn (II), Fe (II), Cu (II), Cu (I), Zn, получены в результате частичной или полной эквимолекулярной замены MgO в составе магнийалюмосиликатной системы, соответствующей стехиометрическому содержанию оксидов MgO, Al₂O₃ и SiO₂ в алюмосиликате магния (кордиерите) Mg₂Al₄Si₅O₁₈, на оксиды MnO, FeO, CuO, Cu₂O и ZnO.

Химический состав исходного немодифицированного керамического материала (серия I) соответствовал химическому стехиометрическому составу (мас. %) алюмосиликата магния $Mg_2Al_4Si_5O_{18}$: MgO-13.8; $Al_2O_3-34.9$; $SiO_2-51.3$. В качестве основных исходных сырьевых компонентов использовались природные (минеральные) компоненты (глина веселовская, тальк онотский, технический глинозем), а в качестве модифицирующих добавок – химически чистые соединения (карбонат марганца (II), оксид железа (II), оксиды меди (I и II), оксид цинка).

Индексы составов исследуемых модифицированных композиций (М, F, C, C (I) и Z) – это первые буквы в латинском обозначении элементов, образующих модифицирующие оксиды. Цифры от 1 до 4 условно соответствуют постепенному увеличению содержания модифицирующего оксида от 6 до 24 мас. %.

Методами количественного и качественного рентгенофазового анализа (РФА), ИКспектроскопии и сканирующей электронной микроскопии (СЭМ) с использованием системы электронного зондового энергодисперсионного рентгенофлуоресцентного EDX химического анализа JED-2201 JEOL установлены законо-

мерности и изучена кинетика процессов фазообразования твердых растворов алюминатов и алюмосиликатов в системах MgO (MnO, FeO, CuO, Cu₂O, ZnO) – Al₂O₃ – SiO₂. Характерной особенностью процесса фазообразования в магнийалюмосиликатных системах, модифицированных оксидами элементов более основной химической природы (MnO, FeO, Cu₂O), является образование соединений алюмосиликатного ряда – $Mg_2Al_4Si_5O_{18}$ и твердых растворов $Mg_{2-\nu}$ Э_{ν}Al₄Si₅O₁₈ (0,5 < y < 1,5) высоко- и низкотемпературных модификаций. Качественный фазовый состав исследуемых материалов, модифицированных оксидами более амфотерной природы (ZnO и CuO), характеризуется присутствием твердых растворов алюминатов Mg_{1-x} $Э_x Al_2 O_4$ $(0.10 \le x \le 0.75)$ и силикатов цинка и меди (II).

В результате анализа ряда кинетических уравнений [4], соответствующих различным моделям физико-химического взаимодействия, экспериментально установлено, что профазообразования $Mg_{1-x} \ni_x Al_2O_4$ Mg_{2-v}Э_vAl₄Si₅O₁₈ в системах MgO (MnO, FeO, CuO, Cu_2O , ZnO) – Al_2O_3 – SiO_2 удовлетворительно описываются кинетическим уравнением анти-Гинстлинга-Броунштейна (1) для твердых растворов алюминатов $Mg_{1-x} \ni_x Al_2 O_4$ и соединений алюмосиликатного Mg_{2-y} Э_yAl₄Si₅O₁₈ ряда низкотемпературной модификации и анти-Яндера (2) для твердых растворов алюмосиликатов $Mg_{2-\nu}$ \Im_{ν} $Al_4Si_5O_{18}$ высокотемпературной модификации:

$$1 + \frac{2}{3}\alpha - (1 + \alpha)^{\frac{2}{3}} = K_{A\Gamma B}\tau;$$
 (1)

$$\left((1+\alpha)^{\frac{1}{3}}-1\right)^2=K_{ASI}\tau,$$
 (2)

где α — степень превращения; $K_{A\Gamma B}$ и $K_{A\Pi}$ — константы уравнений анти-Гинстлинга-Броунштейна (А-Г-Б) и анти-Яндера (А-Я), \mathbf{q}^{-1} ; τ — время изотермической выдержки, \mathbf{q} .

Установленное соответствие позволяет считать возможным применение соответствующих уравнениям (1) и (2) кинетических диффузионных моделей для описания механизмов лимитирующих стадий процессов фазообразования Mg_{1-x} - J_x Al₂O₄ и Mg_{2-y} - J_y Al₄Si₅O₁₈ в исследуемых системах [5].

В результате комплекса исследований, проведенных для всех составов (2-X)MgO·XЭO(Э $_2$ О) × × 2Al $_2$ O $_3$ ·5SiO $_2$, получены уравнения реакций фазообразования Mg $_{1-x}$ Э $_x$ Al $_2$ O $_4$ и Mg $_{2-y}$ Э $_y$ Al $_4$ Si $_5$ O $_{18}$ в системах MgO (MnO, FeO, CuO, Cu $_2$ O, ZnO) – Al $_2$ O $_3$ – SiO $_2$.

В ходе математической обработки экспериментальных данных с использованием выбран-

ных кинетических уравнений (1) и (2) получены значения констант кинетических уравнений ($K_{\text{AГБ}}$ и $K_{\text{AЯ}}$), по температурной зависимости ко-

торых определены значения энергий активации (E_A) реакций фазообразования Mg_{1-x} Э $_x$ А l_2 О $_4$ и Mg_{2-y} Э $_y$ А l_4 S i_5 О $_{18}$, приведенные в табл. 2–4.

Таблица 2 Константы кинетических уравнений и энергии активации процессов образования твердых растворов $\mathbf{Mg}_{1-x}\mathbf{9}_x\mathbf{Al_2O_4}$ (0,10 < x < 0,75), где $\mathbf{9}$ – элемент, образующий модифицирующий оксид

Индекс состава	Температура обжига, К	$E_{ m A}$, кДж/моль	$K \cdot 10^2, \mathrm{y}^{-1}$	Условное обозна- чение уравнения
	1373		4,33±1,00	71
C(I)	1423	112±12	3,07±0,04	А-Г-Б
` '	1473		2,23±0,50	
	1423		2,45±0,50	
F-1	1450	150±20	3,16±0,50	А-Я
	1473		3,89±1,00	
	1173		$0,26\pm0,01$	
C-1	1223	279±15	0,93±0,15	А-Г-Б
	1273		2,41±0,44	
Z-1	1423		2,04±0,50	
	1450	282±13	3,18±0,40	А-Г-Б
	1473	1	3,26±1,00	

Таблица 3 Константы кинетических уравнений и энергии активации процессов образования твердых растворов $Mg_{2-y} \ni_y Al_4 Si_5 O_{18} \ (0,5 < y < 1,5)$ низкотемпературной модификации, где \ni – элемент, образующий модифицирующий оксид

Индекс	Температура	E_{A} , кДж/моль	$K \cdot 10^2$, ч ⁻¹	Условное обозна-
состава	обжига, К	Ед, кдж/моль	K · 10 , 4	чение уравнения
I	1423		$0,42\pm0,09$	
	1450	254±40	$0,63\pm0,08$	А-Г-Б
	1473		0,91±0,02	
F-1	1423		2,21±0,50	
	1450	140±8	2,73±0,06	R-A
	1473		3,24±0,80	
C(I)	1373		0,51±0,70	
	1450	303±40	1,31±0,07	А-Г-Б
	1473		4,27±1,00	
Z-1	1423		1,01±0,50	
	1450	140±16	1,26±0,07	А-Г-Б
	1473	1	1,47±0,40	

Таблица 4 Константы кинетических уравнений и энергии активации процессов образования твердых растворов ${
m Mg_{2-y}}{
m 9}_y{
m Al_4}{
m Si_5}{
m O_{18}}$ (0,5 < y < 1,5) высокотемпературной модификации, где ${
m Э}$ – элемент, образующий модифицирующий оксид

	, ,	/ 1 J · · · · · · · · · · · · · · · · · ·	. 10	
Индекс состава	Температура обжига, К	$E_{ m A}$, кДж/моль	$K \cdot 10^2$, ч ⁻¹	Условное обозна- чение уравнения
	1473		0,38±0,80	
I	1500	811±90	1,23±0,09	А-Я
	1523		3,42±0,90	
C(I)	1373		0,06±0,03	
	1423	759±90	0,54±0,02	А-Я
	1473		4,80±1,00	
M-1	1373	331±60	0,50±0,25	
	1423		3,78±0,80	А-Г-Б
	1473		2,30±0,80	1
F-1	1473		0,25±0,09	
	1500	1040±75	1,13±0,05	А-Я
	1523		2,57±0,35	

Методом дифференциальной сканирующей калориметрии (ДСК) с использованием дифференциального сканирующего калориметра TGA/DSC 1HT/319 системы STAR $^{\rm e}$ компании METTLER TOLEDO (Германия) с привлечением программного обеспечения STAR $^{\rm e}$ SW 9.20 определены тепловые эффекты реакций фазообразования $Mg_{1-x} \mathcal{P}_x Al_2 O_4$ и $Mg_{2-y} \mathcal{P}_y Al_4 Si_5 O_{18}$.

На основании экспериментально определенных величин тепловых эффектов (ΔH°_{T}) реакций фазообразования твердых растворов алюминатов $Mg_{1-x} \mathcal{I}_{x} Al_{2} O_{4}$ и алюмосиликатов $Mg_{2-y} \mathcal{I}_{y} Al_{4} Si_{5} O_{18}$ по известной методике [6–8] с привлечением справочных данных [4, 6, 9, 10] рассчитаны отсутствующие в литературных источниках стандартные теплоты образования ($\Delta H^{\circ}_{f, 298}$) твердых растворов $Mg_{1-x} \mathcal{I}_{x} Al_{2} O_{4}$ и $Mg_{2-y} \mathcal{I}_{y} Al_{4} Si_{5} O_{18}$, представленные в табл. 5.

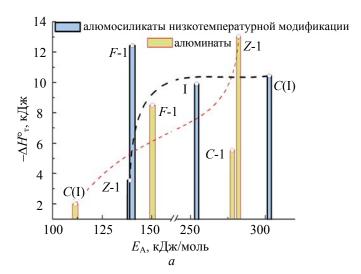
Сравнение значений стандартных теплот образования ($\Delta H^{\circ}_{f, 298}$) алюминатов $\Im Al_2O_4$ (табл. 6), рассчитанных в соответствии с указанной методикой, со значениями, представленными в справочной литературе, подтверждает допустимость используемого ме-

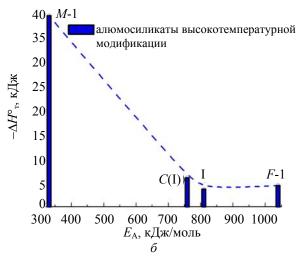
тода и позволяет считать результаты расчета достаточно точными. Суммарная погрешность при расчете стандартной теплоты образования соединения с учетом погрешностей, вносимых при экспериментальном определении тепловых эффектов реакций фазообразования и при использовании данных справочной литературы, может достигать 5–15%.

Несмотря на отсутствие принципиальной корреляционной связи между кинетическими и термодинамическими характеристиками различных процессов, авторами [6] приводятся приближенные правила и уравнения, позволяющие установить взаимосвязь величины активационного барьера $(E_{\rm A})$ с абсолютным значением теплового эффекта (ΔH°_{T}) для серий однотипных реакций.

На основании результатов высокотемпературных калориметрических исследований проведено сопоставление кинетических характеристик и тепловых эффектов реакций фазообразования твердых растворов алюминатов $Mg_{1-x}\mathcal{I}_xAl_2O_4$ и алюмосиликатов $Mg_{2-y}\mathcal{I}_yAl_4Si_5O_{18}$ в исследованных системах MgO (MnO, FeO, CuO, Cu₂O, ZnO) – Al_2O_3 – SiO_2 .

Таблица 5 Сводная таблица расчетных значений стандартных теплот образования твердых растворов алюминатов и алюмосиликатов


Индекс состава	Формула соединения	Расчетное значение стандартной теплоты образования $-\Delta H^{\circ}_{f,298}$, кДж/моль	Стандартный тепловой эффект процесса фазообразования $-\Delta H^{\circ}_{T}$, кДж	Температура процесса фазообразования T , K
M-1	$Mn_{0,5}Mg_{0,5}Al_2O_4$	2259	7,15	1141±13
F-1	$Fe_{0,245}Mg_{0,755}Al_2O_4$	2209	8,50	1261±20
C-1	$Cu_{0,5}Mg_{0,5}Al_2O_4$	2301	5,54	1123±20
C(I)	$Cu_{0,13}Mg_{0,87}Al_2O_4$	2348	18,44	1112±29
Z-1	$Zn_{0,45}Mg_{0,55}Al_2O_4$	2090	13,03	1139±14
M-1	$Mn_{0,88}Mg_{1,12}Al_4Si_5O_{18}$	9066	39,73	1293±7
F-1	$Fe_{0,49}Mg_{1,51}Al_4Si_5O_{18}$	9909	8,50	1473±28
F-4	Fe ₂ Al ₄ Si ₅ O ₁₈	9218	8,39	1255±20
M-4	$Mn_3Al_2Si_2O_{10}$	5135	4,40	1251±15


Таблица 6 Расчетные и справочные значения стандартных теплот образования алюминатов

Соединение	Расчетное значение $-\Delta H^{\circ}_{f,298}, кДж/моль$	Справочное значение [4] - $\Delta H^{\circ}_{f, 298}$, кДж/моль	Отклонение расчетных значений от справочных, %
$MgAl_2O_4$	2486	2313	7,4
$MnAl_2O_4$	2080	2098	0,9
FeAl ₂ O ₄	2018	1982	1,8
CuAl ₂ O ₄	2029	1808	12,2
$ZnAl_2O_4$	2073	2067	0,3

Энергия активации для процессов фазообразования твердых растворов алюминатов Mg_{1-x} $Э_x Al_2O_4$ и алюмосиликатов низкотемпературной модификации Mg_{2-y} $Э_y Al_4 Si_5O_{18}$ возрастает при увеличении абсолютного значения величинытеплового эффекта исследуемого процесса (рисунок, a). Такое соотношение позволяет сделать вывод, что незначительная величина теплового эффекта таких реакций не оказывает влияния на кинетику процесса в заметной степени.

Для реакций фазообразования алюмосиликатов высокотемпературной модификации Mg_{2-y} - J_y - Al_4 Si₅O₁₈, протекающих при более высоких температурах и сопровождающихся выделением большего количества теплоты, установлено уменьшение энергии активации процесса при увеличении абсолютной величины его теплового эффекта (рисунок, δ).

Соотношение между тепловыми эффектами и энергиями активации реакций фазообразования твердых растворов алюминатов и алюмосиликатов низкотемпературной модификации (a) и твердых растворов алюмосиликатов высокотемпературной модификации (δ)

Заключение. Таким образом, в результате комплекса проведенных исследований экспериментально определены тепловые эффекты реакций фазообразования в модифицированных магнийалюмосиликатных системах MgO (MnO, FeO, CuO, Cu₂O, ZnO) – Al₂O₃ – SiO₂ методом ДСК; определены отсутствующие в справочной литературе стандартные теплоты образования твердых растворов алюминатов Mg_{1-x} 3_x Al_2O_4 и алюмосиликатов $Mg_{2-\nu}$ Θ_{ν} $Al_4Si_5O_{18}$; экспериментально установлено, что процессы фазообразования в исследуемых системах удовлетворительно описываются кинетическими уравнениями анти-Гинстлинга-Броунштейна (А-Г-Б) для твердых растворов алюминатов Mg_{1-x} $\Im_x Al_2 O_4$ и соединений алюмосиликатного ряда низкотемпературной модификации $Mg_{2-\nu}$ Э $_{\nu}$ Al $_{4}$ Si $_{5}$ O $_{18}$ и анти-Яндера (A-Я) для твердых растворов алюмосиликатов высокотемпературной модификации $Mg_{2-\nu} \mathcal{P}_{\nu} Al_4 Si_5 O_{18}$; получены значения констант кинетических уравнений и энергий активации исследуемых реакций; установлено соотношение между кинетическими характеристиками и тепловыми эффектами реакций фазообразования твердых растворов алюминатов Mg_{1-x} Э_xAl₂O₄ и алюмосиликатов Mg_{2-y} Э_yAl₄Si₅O₁₈ в исследуемых модифицированных магнийалюмосиликатных системах MgO (MnO, FeO, CuO, Cu_2O_1 , ZnO_2) – Al_2O_3 – SiO_2 .

Термодинамические и кинетические характеристики исследуемых реакций фазообразования $Mg_{1-x} \mathcal{I}_x Al_2 O_4$ и $Mg_{2-y} \mathcal{I}_y Al_4 Si_5 O_{18}$ в системах MgO (MnO, FeO, CuO, Cu₂O, ZnO) — $Al_2 O_3$ — SiO_2 в комплексе могут быть использованы как при проведении научных исследований модифицированных магнийалюмосиликатных систем, так и при разработке технологии получения на их основе термостойких и электроизоляционных керамических материалов.

Литература

- 1. Салычиц, О. И. Влияние оксидов железа (II) и стронция на структуру и свойства магнийалюмосиликатной керамики / О. И. Салычиц, Е. М. Дятлова // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. 2007. № 3. С. 104—107.
- 2. Салычиц, О. И. Температурный коэффициент линейного расширения керамических материалов, образующихся в системе MgO Al₂O₃ –SiO₂, модифицированной оксидами MnO, FeO, C₂O, CuO и ZnO, при нагревании / О. И. Салычиц, С. Е. Орехова // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. 2009. Вып. XVII. С. 12–16.
- 3. Салычиц, О. И. Влияние оксидов 3d-элементов на прочностные свойства керамики на основе $Mg_2Al_4Si_5O_{18}$ / О. И. Салычиц, С. Е. Орехова, А. В. Дорожко // Химия твердого тела и

- функциональные материалы 2008: тез. докл. Всеросс. конф., Екатеринбург, 21—24 окт. 2008 г. / Рос. акад. наук; редкол.: Г. П. Швейкин [и др.]. Екатеринбург, 2008. С. 311.
- 4. Третьяков, Ю. Д. Твердофазные реакции / Ю. Д. Третьяков. М.: Химия, 1978. 360 с.
- 5. Салычиц, О. И. Кинетика фазообразования в системе MgO (ZnO) Al_2O_3 SiO_2 / О. И. Салычиц, С. Е. Орехова // Свиридовские чтения: сб. ст. / Белорус. гос. ун-т; редкол.: Т. Н. Воробьева [и др.]. Минск, 2008. Вып. 4. С. 38–43.
- 6. Бабушкин, В. И. Термодинамика силикатов / В. И. Бабушкин, Г. М. Матвеев, О. П. Мчедлов-Петросян. 2-е изд., перераб. и доп. М.: Изд-во лит-ры по стр-ву, 1972. 352 с.
- 7. Иванова, Л. И. Зависимость между теплоемкостью твердых веществ и температурой

- первого фазового перехода / Л. И. Иванова // Журнал физической химии. 1961. Т. XXXV, N 9. С. 2120.
- 8. Ландия, Н. А. Расчет высокотемпературных теплоемкостей твердых неорганических веществ по стандартной энтропии / Н. А. Ландия. Тбилиси: Изд-во Груз. ССР, 1962. 224 с.
- 9. Термические константы веществ: в 10 вып. / редкол.: В. Глушко (отв. ред.) [и др.]. М.: ВИНИТИ, 1966—1982. Вып. IV, ч. 1. 1973. 510 с.; Вып. V. 1971. 532 с.; Вып. VI, ч. 1. 1972. 370 с.; Вып. IX. 1979. 574 с.
- 10. Волков, А. И. Большой химический справочник / А. И. Волков, И. М. Жарский. Минск: Современная школа, 2005. 608 с.

Поступила 31.03.2010