УДК 536.42+537.31+546.73+54-165

Г. С. Петров, доцент (БГТУ); Л. А. Башкиров, профессор (БГТУ); Н. Н. Лубинский, мл. науч. сотрудник (БГТУ); И. Н. Кандидатова, студент (БГТУ); А. И. Галяс, ст. науч. сотрудник (Научно-практический центр НАН Беларуси по материаловедению)

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ИНДАТОВ НЕОДИМА, ЛАНТАНА

Керамическим методом получены индаты неодима, лантана Nd_{1-x}La_xInO₃, исследованы их кристаллическая структура, ИК-спектры, термическое расширение и магнитные свойства. Показано, что все образцы имели структуру орторомбически искаженного перовскита. Обнаружено, что ИК-спектры образцов похожи друг на друга. На температурных зависимостях относительного удлинения отсутствовали аномалии, обусловленные фазовыми переходами. Показано, что закон Кюри – Вейсса выполняется для двух температурных интервалов, для которых рассчитаны эффективные магнитные моменты ионов неодима ($\mu_{эфф, Nd^{3+}}$). Установлено, что при замещении парамагнитных ионов Nd³⁺ диамагнитными ионами La³⁺ до x = 0,7 $\mu_{эфф, Nd^{3+}}$ уменьшается, что, вероятно, может быть обусловлено уменьшением спин-орбитального взаимодействия.

Indates of neodymium, lanthanum Nd_{1-x}La_xInO₃ were prepared by ceramic method and their crystal structure, IR-spectra, thermal expansion and magnetic properties were investigated. It was found that all the samples had the structure of orthorhombically distorted perovskite. It was observed that IR-spectra of the samples were similar. Temperature dependences of relative elongation had no anomalies due to the phase transitions. It was shown that Cirie – Weiss law was observed for two temperature intervals. For these intervals effective magnetic moments of Nd³⁺ ions ($\mu_{ef, Nd^{3+}}$) were evaluated. It was found that at substitution of paramagnetic Nd³⁺ ions by diamagnetic La³⁺ ions up to $x = 0.7 \mu_{ef, Nd^{3+}}$ was decreased that probably might be due to spin-orbital interaction decrease.

Введение. В последние годы возобновился интерес к исследованию физико-химических свойств кобальтитов лантана и других редкоземельных элементов LnCoO₃, что обусловлено наличием у этих объектов особых магнитных, электрических свойств, заметной электрохимической и каталитической активности, вследствие чего они широко используются в качестве электродных материалов для гальванических элементов с твердым электролитом, для изготовления керамических мембран с целью получения чистого кислорода из воздуха, а также в устройствах новой области науки и техники – спинтроники [1-6]. При этом подавляющее число работ посвящено изучению индивидуальных кобальтитов редкоземельных элементов LnCoO₃, для которых показано, что их электрофизические свойства во многом обусловлены спиновым состоянием 3d⁶-электронов ионов Co³⁺ и наблюдаемым спиновым переходом ионов Со³⁺ из низкоспинового в промежуточно-спиновое и/или высокоспиновое состояние. Кроме того, для данных кобальтитов имеет место фазовый переход типа полупроводник – металл, протекающий в довольно широком интервале температур [7-8]. Заметим, что результаты физико-химических исследований различных авторов не всегда хорошо согласуются между собой. Для твердых растворов соответствующих кобальтитов литературные данные по физикохимическим свойствам практически отсутствуют.

Недавно нами проведены комплексные исследования физико-химических свойств твердых растворов кобальтитов-галлатов лантана и неодима $LnCo_{1-x}Ga_xO_3$ (Ln = La, Nd), а также скандата, галлата и индата неодима NdMeO₃ (Me = Sc, Ga, In) и оценен эффективный магнитный момент магнитных ионов в исследованных фазах [9–13].

Цель настоящей работы – исследовать влияние изовалентного замещения парамагнитных ионов неодима Nd³⁺ диамагнитными ионами La³⁺ на кристаллическую структуру, ИК-спектры, термическое расширение и магнитные свойства индатов неодима, лантана Nd_{1-x}La_xInO₃.

Методика эксперимента. Индаты неодима, лантана $Nd_{1-x}La_xInO_3$ (x = 0, 0-1, 0) получали керамическим методом из оксидов индия, неодима, лантана. Все реактивы имели квалификацию «х.ч.». Порошки исходных соединений, взятых в заданных молярных соотношениях, смешивали и мололи в планетарной мельнице «Pulverizette 6» с добавлением этанола. Полученную шихту с добавлением этанола прессовали под давлением 50-75 МПа в таблетки диаметром 25 мм и высотой 5-7 мм и затем отжигали при 1523 К на воздухе в течение 4 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм², которые отжигали при температуре 1523 К на воздухе в течение 4 ч.

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCED с использованием CuK_{α}-излучения пошаговым методом съемки (шаг по углу 20 – 0,03°, выдержка в каждой точке 3 с) в диапазоне углов 20 20–80°.

Для идентификации твердых растворов были использованы сведения картотеки международного центра дифракционных данных (ICDD JCPDS). Параметры кристаллической структуры исследованных кобальтитов и их твердых растворов определяли при помощи рентгеноструктурного табличного процессора RTP.

Инфракрасные спектры синтезированных соединений в интервале волновых чисел 350–900 см⁻¹ записывали на ИК-Фурье спектрометре NEXUS фирмы THERMO NICOLET.

Удельная намагниченность (σ) и удельная магнитная восприимчивость (χ_{yd}) полученных образцов твердых растворов индатов неодима, лантана Nd_{1-x}La_xInO₃ измерялась методом Фарадея в магнитном поле H = 8,6 кЭ в интервале температур 80–950 К на установке «Научнопрактического центра НАН Беларуси по материаловедению», а также в интервале температур 6–300 К на универсальной высокополевой измерительной системе (Cryogenic Ltd, London, 41S).

Термическое расширение керамических образцов исследовали на воздухе в интервале температур 300–1100 К при помощи вертикального кварцевого дилатометра с индикатором микронным ИГМ (цена деления 0,001 мм) в динамическом режиме (скорость нагрева и охлаждения 3–5 К·мин⁻¹). Значения среднего линейного коэффициента термического расширения (ЛКТР) образцов в широком интервале температур рассчитывали при помощи метода наименьших квадратов. Погрешность в определении α составляла 1–5% для различных образцов и температурных интервалов.

Результаты и их обсуждение. Анализ рентгеновских дифрактограмм (рис. 1) показал, что полученные образцы индатов неодима, лантана были однофазными и в системе NdInO₃ – LaInO₃ образуется непрерывный ряд твердых растворов Nd_{1-x}La_xInO₃ с кристаллической структурой орторомбически искаженного перовскита. При увеличении степени замещения x ионов Nd³⁺ ионами La³⁺ наблюдается постепенный рост параметров a, b, c и объема элементарной решетки (табл. 1) твердых растворов Nd_{1-r}La_rInO₃. При этом степень орторомбического искажения (є) при увеличении степени замещения ионов неодима Nd³⁺ ионами лантана La³⁺ постепенно уменьшается с $4,72 \cdot 10^{-2}$ для NdInO₃ до $3,87 \cdot 10^{-2}$ для LaInO₃ (табл. 1).

ИК-спектры поглощения твердых растворов $Nd_{1-x}La_xInO_3$ приведены на рис. 2. Ввиду того, что ИК-спектры $NdInO_3$ и LaInO_3 отличаются незначительно, то и увеличение степени замещения ионов Nd^{3+} ионами La³⁺ приводит лишь к небольшому изменению частот (волновых чисел) полос поглощения. Например, частота по-

глощения, обусловленная колебаниями связей In - O, изменяется от 550 см⁻¹ для NdInO₃ до 548 см⁻¹ для LaInO₃.

Рис. 1. Рентгеновские дифрактограммы образцов индатов неодима, лантана Nd_{1-x}La_xInO₃ при различных значениях *x*: *1* – 0,00; *2* – 0,30; *3* – 0,50; *4* – 0,70; *5* – 1,00

Таблица 1

Параметры кристаллической решетки *a*, *b*, *c*, объем элементарной ячейки (V) и степень орторомбического искажения (є) для индатов неодима, лантана Nd_{1-x}La_xInO₃

Coc-	Параметры кристаллической решетки, нм						
тав, <i>х</i>	а	b	С	$V \cdot 10^3$, HM^3	$\epsilon \cdot 10^2$		
0,00	0,5631	0,5897	0,8133	270,06	4,72		
0,30	0,5647	0,5908	0,8148	271,89	4,62		
0,50	0,5674	0,5916	0,8171	274,28	4,27		
0,70	0,5689	0,5927	0,8182	275,89	4,18		
1,00	0,5712	0,5933	0,8220	278,54	3,87		

Изучение кривых ДТА, ТГ, ДТГ, полученных для твердых растворов $Nd_{0,9}La_{0,1}InO_3$, $Nd_{0,7}La_{0,3}InO_3$ показало, что резкая потеря массы наблюдается при температурах 588°С (810 K) для $Nd_{0,9}La_{0,1}InO_3$ и 634°С (907 K) для $Nd_{0,7}La_{0,3}InO_3$. При этих температурах потеря массы для $Nd_{0,9}La_{0,1}InO_3$ составляет 0,0916 · 10⁻³%, а для $Nd_{0,7}La_{0,3}InO_3 - 0,0375 \cdot 10^{-2}$ %. На кривых ДТА, полученных для индатов $Nd_{0,9}La_{0,1}InO_3$, $Nd_{0,7}La_{0,3}InO_3$, тепловые эффекты практически отсутствуют.

Результаты измерения термического расширения керамических образцов индатов $Nd_{1-x}La_xInO_3$ (x = 0,0; 0,2; 0,3; 0,5; 0,7; 1,0) представлены на рис. 3.

Рис. 2. ИК-спектры индатов неодима, лантана Nd_{1-x}La_xInO₃ при различных значениях *х*: *1* – 0,0; *2* – 0,1; *3* – 0,2; *4* – 0,3; *5* – 0,5; *6* – 0,7; *7* – 0,8; *8* – 0,9; *9* – 0,1

Рис. 3. Температурная зависимость относительного удлинения $\Delta l / l_0$ образцов Nd_{1-x}La_xInO₃ при различных значениях x

В интервале температур 400-1120 К на температурных зависимостях относительного удлинения образцов ($\Delta l / l_0$) отсутствуют явно выраженные аномалии. Это указывает на отсутствие в этом интервале температур протекания какихлибо фазовых переходов. Рассчитанные методом наименьших квадратов средние линейные коэффициенты термического линейного расширения (α) образцов индатов Nd_{1-x}La_xInO₃ приведены в табл. 2. Полученные результаты показывают, что увеличение степени замещения х ионов неодима Nd³⁺ ионами La³⁺ мало влияет на коэффициент термического линейного расширения. При этом следует отметить, что коэффициенты термического линейного расширения для твердых растворов индатов Nd_{1-x}La_xInO₃ на порядок меньше коэффициентов термического линейнорасширения для кобальтита NdCoO₃ го $(\alpha_{cp} = (3,75-2,14) \cdot 10^{-5} \text{ K}^{-1}).$

Таблица 2

Средние линейные коэффициенты термического расширения (α) образцов индатов неодима, лантана Nd_{1-x}La_xInO₃

Образец	$\alpha \cdot 10^6$, K ⁻¹	
NdInO ₃	8,89	
Nd _{0,8} La _{0,2} InO ₃	9,18	
Nd _{0,7} La _{0,3} InO ₃	8,86	
Nd _{0,5} La _{0,5} InO ₃	8,81	
Nd _{0,3} La _{0,7} InO ₃	8,65	
LaInO ₃	8,40	

Температурные зависимости обратных велимагнитной восприимчивости чин удельной (1 / χ_{va}) для индатов неодима, лантана показаны на рис. 4, из которого видно, что закон Кюри-Вейсса (линейная зависимость 1 / χ_{yg} от T) выполняется не во всем исследованном интервале температур. Для интервалов (90-300, 480-900 К), в которых удельная магнитная восприимчивость исследованных образцов изменяется по закону Кюри – Вейсса, методом наименьших квадратов определены уравнения линейной зависимости 1 / χ_{yg} от *T* (1 / $\chi_{yg} = a + bT$). По коэффициентам *a* и b этих уравнений рассчитаны удельные постоянные Кюри ($C_{yg} = 1 / b$); постоянные Вейсса $(\Theta = -a/b)$ (табл. 3). Величины молярной постоянной Кюри (См) определяли путем умножения Суд на молярную массу соответствующего индата Nd_{1-x}La_xInO₃. Эффективный магнитный момент ионов неодима Nd^{3+} ($\mu_{\mbox{-}9\phi, Nd^{3+}}$) в индатах Nd_{1-x}La_xInO₃ вычисляли по формуле

$$\mu_{\mathcal{A}\mathcal{A}, Nd^{3+}} = f\sqrt{C_{\mathcal{M}}}, \qquad (1)$$

Рис. 4. Зависимость 1 / χ_{ya} от температуры для Nd_{1-x}La_xInO₃ при различных значениях *x*: 1 - 0.0; 2 - 0.3; 3 - 0.5; 4 - 0.7

Для индатов $Nd_{1-x}La_xInO_3$ (x = 0,0; 0,3; 0,5;0,7) коэффициенты f равны 2,828; 3,380; 3,999; 5,163 соответственно. Найденные по формуле (1) значения эффективного магнитного момента ионов Nd^{3+} ($\mu_{3\phi, Nd^{3+}}$) в $Nd_{1-x}La_xInO_3$ для интервалов температур 90–300, 480–900 К приведены в табл. 3.

Таблица 3

Удельная (C_{уд}), молярная (C_м) постоянные Кюри, постоянная Вейсса (O), эффективный магнитный момент ионов Nd³⁺ (µ_{эф, Nd}³⁺) для Nd_{1-x}La_xInO₃ в интервалах температур выполнения закона Кюри – Вейсса

x	С _{уд} · 10 ² , см ³ ·К/г	С _м , см ³ ·К/моль	μ _{эφ} , μ _Β	Θ, Κ			
Интервал температур 90–300 К							
0	0,5078	1,5591	3,53	-34,9			
0,30	0,3430	1,0476	3,46	-29,7			
0,50	0,2238	0,6814	3,30	-31,0			
0,70	0,0934	0,2834	2,75	-19,2			
Интервал температур 480–900 К							
0	0,7767	2,385	4,37	-388			
0,30	0,4828	1,475	4,11	-304,6			
0,50	0,1863	0,5671	3,01	-215			
0,70	0,1859	0,5639	3,88	-205,5			

Полученные результаты показывают, что увеличение степени замещения парамагнитных ионов неодима Nd^{3+} диамагнитными ионами лантана La^{3+} в $Nd_{1-x}La_xInO_3$ до x = 0,7 приводит в

интервале температур 90–300 К к постепенному уменьшению эффективного магнитного момента ионов Nd³⁺ ($\mu_{a\varphi, Nd^{3+}}$) с 3,53 μ_B для NdInO₃ до 2,75 μ_B для Nd_{0,3}La_{0,7}InO₃. Такое уменьшение эффективного магнитного момента ионов неодима Nd³⁺, возможно, связано с «частичным замораживанием» орбитального момента кристаллическим полем искаженного перовскита и уменьшением его вклада в результирующий магнитный момент ионов Nd³⁺, теоретическая величина которого для Nd³⁺ равна 3,62 μ_B .

В интервале температур 480–900 К увеличение степени замещения x в $Nd_{1-x}La_xInO_3$ до 0,5 также приводит к уменьшению эффективного магнитного момента ионов Nd^{3+} с 4,37 μ_B для $NdInO_3$ до 3,01 μ_B для $Nd_{0.5}La_{0.5}InO_3$.

Заключение. Для индатов неодима, лантана установлены закономерности влияния степени замещения парамагнитных ионов Nd³⁺ диамагнитными ионами La^{3+} в $Nd_{1-x}La_xInO_3$ на кристаллическую структуру, ИК-спектры и коэффициент термического линейного расширения. В интервале температур 80–950 К измерена магнитная восприимчивость для Nd_{1-r}La_rInO₃ $(0,0 \le x \le 1,0)$. Установлено, что закон Кюри – Вейсса выполняется не во всем интервале температур. Для интервалов температур (90-300, 480-900 К), в которых удельная магнитная восприимчивость образцов изменяется по закону Кюри – Вейсса, определены эффективные магнитные моменты ионов неодима Nd³⁺. Показано, что эффективные магнитные моменты ионов неодима Nd³⁺ для твердых растворов Nd_{1-x}La_xInO₃ при увеличении степени замещения парамагнитных ионов Nd³⁺ диамагнитными ионами La^{3+} до x = 0,7 постепенно уменьшаются, что, возможно, связано со снижением спинорбитального взаимодействия и вклада орбитального магнитного момента в результирующий магнитный момент ионов Nd³⁺.

Литература

1. Пальгуев, С. Ф. Высокотемпературные оксидные электронные проводники для электрохимических устройств / С. Ф. Пальгуев, В. К. Гильдерман, В. И. Земцов. – М.: Наука, 1990. – 198 с.

 Вашук, В. В. Синтез и физико-химические свойства соединений с перовскитной и перовскитоподобной структурой на основе оксидов кобальта и никеля: дис. ... д-ра хим. наук: 02.00.04 / В. В. Вашук. – Минск, 2000. – 310 л.

3. Viswanathan, B. Solid state and catalytic of properties of rare earth cobaltites – new generation catalysts / B. Viswanathan // J. Sci. Ind. Res. – 1984. – Vol. 4, № 3. – P. 156–163.

4. Хартон, В. В. Физико-химические и электрохимические свойства электродных материалов Ln(Sr)CoO₃ / В. В. Хартон, Е. Е. Наумович, П. П. Жук // Электрохимия. – 1992. – Т. 28, № 12. – С. 1693–1702.

5. Jakobs, S. Sauerstoffelectroden aus Mischoxiden mit Zirkondioxid und Cobaltaten der seltenen Erden / S. Jakobs, R. Hartung, H.-H. Mobius // Rev. Chim. Miner. – 1980. – Vol. 17, № 4. – P. 283–298.

6. Kharton, V. V. Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. II. Perovskite-related oxides / V. V. Kharton, A. A. Yaremchenko, E. N. Naumovich // J. Solid State Electrochem. – 1999. – Vol. 3. – P. 303–326.

7. Rao, C. N. R. Spin-State Transition in LaCoO₃ and Related Materials / C. N. R. Rao, Md. Motin Seikh, Chandrabhas Narayana // Top. Curr. Chem. – Berlin: Springer-Verlag, 2004. – Vol. 234. – P. 1–21.

8. Knižek, K. Structural anomalies associated with the electronic and spin transitions in LaCoO₃ / K. Knižek // The European Phys. J. B. – 2005. – Vol. 47, № 2. – P. 213–220.

9. Магнитная восприимчивость и эффективный магнитный момент ионов неодима в

Nd₂O₃, NdScO₃, NdGaO₃, NdInO₃ / Л. А. Башкиров [и др.] // Весці НАН Беларуси. Сер. хім. навук. – 2008. – № 1. – С. 15–19.

10. Магнитная восприимчивость и эффективный магнитный момент ионов Nd^{3+} , Co^{3+} в $NdCo_{1-x}Ga_xO_3$ / Н. Н. Лубинский [и др.] // Неорган. материалы. – 2008. – Т. 44, № 9. – С. 1137–1143.

11. Кристаллическая структура и ИКспектры кобальтитов-галлатов NdCo_{1-x}Ga_xO₃ / Н. Н. Лубинский [и др.] // Весці НАН Беларуси. Сер. хім. навук. – 2008. – № 3. – С. 5–9.

12. Кристаллическая структура и ИК-спектры кобальтитов-галлатов лантана LaCo_{1-x}Ga_xO₃ / Н. Н. Лубинский [и др.] // Стекло и керамика. – 2009. – № 2, – С. 17–20.

13. Кристаллическая структура и электрофизические свойства кобальтитов-галлатов лантана / Н. Н. Лубинский [и др.] // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. – 2009. – Вып. XVII. – С. 114–118.

Поступила 31.03.2010