УДК 544.02+537.622.4+537.31

Д. Д. Полыко, аспирант (БГТУ); Л. А. Башкиров, профессор (БГТУ); С. В. Труханов, ст. науч. сотрудник (Научно-практический центр НАН Беларуси по материаловедению); Л. С. Лобановский, ст. науч. сотрудник (Научно-практический центр НАН Беларуси по материаловедению)

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ФЕРРИТОВ СИСТЕМ Sr_{1-x}Pr_xFe_{12-x}Co_xO₁₉, (Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO₁₉

Исследована кристаллическая структура ферритов систем $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ ($x \le 0,5$). Установлена зависимость параметров кристаллической решетки от x. Петли гистерезиса получены при 6 и 300 К в магнитных полях до 14 Т. Исследована зависимость намагниченности насыщения и коэрцитивной силы от x при 6 и 300 К. Показано, что ферриты $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, ($Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ ($0,1 \le x \le 0,2$) могут быть использованы для изготовления постоянных магнитов с характеристиками лучше, чем из $SrFe_{12}O_{19}$ и $Sr_{0,85}Ca_{0,15}Fe_{12}O_{19}$.

Crystal structure of $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19} Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}, (x \le 0,5)$ ferrites is investigated. Find dependence lattice parameters *a* and *c* from *x*. Hysteresis curve is obtained at the temperatures 6 and 300 K in the magnetic fields up to 14 T. Defined dependence saturation magnetization and coercive force, from *x* at 6 and 300 K. Find, that ferrites $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ ($0,1 \le x \le 0,2$) can be used for making permanent magnets with better characteristics than $SrFe_{12}O_{19}$ and $Sr_{0,85}Ca_{0,15}Fe_{12}O_{19}$.

Введение. Феррит стронция SrFe₁₂O₁₉ со структурой магнетоплюмбита является магнитотвердым материалом, который применяется для изготовления керамических постоянных магнитов, широко используемых в различных областях науки и техники [1]. В работе [2] установлено, что в системе $Sr_{1-x}La_xFe_{12-x}Co_xO_{19}$ частичное замещение ионов стронция Sr^{2+} ионами La^{3+} и ионов Fe³⁺ ионами Co²⁺ до x = 0,2 приводит к увеличению поля анизотропии и, следовательно, к росту коэрцитивной силы, в значительной степени определяющей энергетическое произведение (BH)_{max} постоянных магнитов, что позволило во Франции освоить производство постоянных магнитов из твердого раствора Sr_{0,8}La_{0,2}Fe_{11,8}Co_{0,2}O₁₉ со значением энергетического произведения (ВН)_{max} = 38,4 кДж/м³.

В последние годы опубликован ряд работ, посвященных в основном изучению кристаллической структуры, спектров Мессбауэра и в меньшей степени исследованию магнитных свойств ферритов $Sr_{1-x}Ln_xFe^{3+}_{12-x}Fe^{2+}_xO_{19}$, $Sr_{1-x}Ln_xFe_{12-x}Co_xO_{19}$ (Ln – Pr, Nd) [3–5]. Поскольку радиус ионов Ca²⁺ ($r_{\mu} = 1,04$ Å)

Поскольку радиус ионов Ca²⁺ ($r_{\mu} = 1,04$ Å) меньше радиуса ионов Sr²⁺ ($r_{\mu} = 1,20$ Å) [6], то частичное замещение ионов Sr²⁺ в SrFe₁₂O₁₉ ионами Ca²⁺ приводит к локальным напряжениям, вследствие чего возрастает коэрцитивная сила. Поэтому можно предположить, что введение ионов кальция в твердые растворы ферритов Sr_{1-x}Pr_xFe_{12-x}Co_xO₁₉ приведет к повышению коэрцитивной силы и величины энергетического произведения (*BH*)_{тах}.

Целью настоящей работы является изучение кристаллической структуры, намагниченности

насыщения, коэрцитивной силы ферритов $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, $(Sr_{0.85}Ca_{0.15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$.

Методика эксперимента. Керамические ферритов $\operatorname{Sr}_{1-x}\operatorname{Pr}_{x}\operatorname{Fe}_{12-x}\operatorname{Co}_{x}\operatorname{O}_{19},$ образцы $(Sr_{0.85}Ca_{0.15})_{1-x}Pr_xFe_{12-x}Co_xO_{19} (x = 0, 0, 1, 0, 2, 0, 3, 0, 1)$ 0,4, 0,5) синтезированы твердофазным методом из оксидов празеодима (Pr_6O_{11}), железа (Fe_2O_3), кобальта (Со₃О₄) и карбонатов стронция, кальция. Все реактивы имели квалификацию ч.д.а. Перемешивание и помол исходных соединений, взятых в необходимом соотношении, проводили в планетарной мельнице «Puluerizette 6» фирмы Fritsch с добавлением этанола. Полученную шихту (с добавлением этанола для улучшения прессуемости) прессовали под давлением 50–75 МПа в таблетки диаметром 19 мм и высотой 5-7 мм, которые затем сушили на воздухе при 373 К и обжигали на подложках из оксида алюминия при температуре 1473 К на воздухе в течение 8 ч. После предварительного обжига таблетки дробили, мололи, прессовали и обжигали при 1473 К в течение 8 ч.

Рентгеновские дифрактограммы образцов ферритов получены на дифрактометре Bruker D8 (излучение CuK_{α}) при комнатной температуре. Намагниченность насыщения и параметры петли гистерезиса намагниченности образцов ферритов цилиндрической формы длинной 5,0– 5,4 мм и диаметром 1–1,2 мм были измерены вибрационным методом при температурах 6 и 300 К в магнитном поле до 14 Т на универсальной высокополевой измерительной системе (Cryogenic Ltd, London, 41S) Института физики твердого тела и полупроводников «Научнопрактического центра НАН Беларуси по материаловедению». Результаты и их обсуждение. Анализ рентгеновских дифрактограмм (рис. 1, 2) показал, что в системах $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ однофазными являются образцы при $x \le 0,3$. На рентгеновских дифрактограммах образцов ферритов систем $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ при значениях $x \ge 0,4$, кроме рентгеновских линий, принадлежащих гексагональной структуре магнетоплюмбита, присутствуют также самые интенсивные линии α -Fe₂O₃ и CoFe₂O₄.

Puc. 1. Рентгеновские дифрактограммы образцов ферритов системы Sr_{1-x}Pr_xFe_{12-x}Co_xO₁₉:
x = 0 (1); 0,1 (2); 0,2 (3); 0,3 (4); 0,4 (5); 0,5 (6);
* – рефлекс (104) α-Fe₂O₃; ◆ – рефлекс (440) CoFe₂O₄

Puc. 2. Рентгеновские дифрактограммы образцов ферритов системы (Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO₁₉: x = 0 (1); 0,1 (2); 0,2 (3); 0,3 (4); 0,4 (5); 0,5 (6);
* – рефлекс (104) α-Fe₂O₃; ◆ – рефлекс (440) CoFe₂O₄

В области однофазности ($x \le 0,3$) параметр кристаллической решетки a ферритов систем Sr_{1-x}Pr_xFe_{12-x}Co_xO₁₉, (Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO₁₉ при увеличении степени замещения x до 0,3 уменьшается линейно (рис. 3, кривые 1, 2) по уравнениям a = 5,8869 - 0,0195x (Å), a = 5,8840 - 0,0115x (Å) соответственно. При увеличении степени замещения x от 0,3 до 0,4 параметр кристаллической решетки a увеличивается, причем для кальцийсодержащих ферритов $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ он увеличивается меньше, чем для системы $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, а при дальнейшем увеличении до 0,5 он практически не изменяется.

Параметр кристаллической решетки с исследуемых ферритов систем $Sr_{1-r}Pr_rFe_{12-r}Co_rO_{19}$, $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ при увеличении значения степени замещения х до 0,3 возрастает линейно (рис. 3, кривые 3, 4) по уравнениям c = 23,027 + 0,4891x (Å), c = 23,028 + 0,2773x (Å) соответственно. В гетерофазной области (x = 0,4; 0,5) параметр *с* кристаллической решетки ферритов системы Sr_{1-r}Pr_xFe_{12-r}Co_xO₁₉ изменяется незначительно (рис. 3, кривая 3), для кальцийсодержащих ферритов системы $(Sr_{0.85}Ca_{0.15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ при увеличении x от 0,3 до 0,4 параметр c увеличивается, а для образцов при x = 0,4; 0,5 он практически одинаков (рис. 3, кривая 4).

Пересечение линейных зависимостей параметра *с* гексагональной кристаллической решетки ферритов систем $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ ($Sr_{0,85}Ca_{0,15}$)_{1-x} $Pr_xFe_{12-x}Co_xO_{19}$ от степени замещения *x* в областях $0 \le x \le 0,3$, $0,3 \le x \le 0,5$ наблюдается при значениях $x \approx 0,30$, $x \approx 0,35$ соответственно. Это указывает, что в исследуемых системах значения степени замещения $x \approx 0,30$, 0,35являются предельными для образования твердых растворов ферритов $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, ($Sr_{0,85}Ca_{0,15}$)_{1-x} $Pr_xFe_{12-x}Co_xO_{19}$.

Объем элементарной ячейки исследуемых систем V рассчитан по формуле $V = 0,866025a^2c$. Рентгеноструктурная плотность однофазных образцов ферритов исследуемых твердых растворов $\rho_{\text{рент}}$ рассчитана по формуле $\rho_{\text{рент}} = 2M / (N_A V)$, где M – молярная масса феррита, N_A – число Авогадро. При $x \le 0,3$ объем элементарной

ячейки V твердых растворов ферритов систем $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ увеличивается линейно по уравнениям V = 691,13 + 10,07x (Å³), V = 691,99 + 5,61x (Å³) соответственно, а рентгеноструктурная плотность $\rho_{\text{рент}}$ линейно возрастает от 5,102, 5,062 г/см³ для ферритов SrFe₁₂O₁₉, Sr_{0,85}Ca_{0,15}Fe₁₂O₁₉ до 5,161, 5,141 г/см³ для ферритов Sr_{0,7}Pr_{0,3}Fe_{11,7}Co_{0,3}O₁₉, (Sr_{0,85}Ca_{0,15})_{0,7}Pr_{0,3}Fe_{11,7}Co_{0,3}O₁₉.

Для феррита SrFe₁₂O₁₉ полученные значения параметров *a* и *c*, объема элементарной решетки *V* и рассчитанной рентгеноструктурной плотности $\rho_{\text{рент}}$ равны 5,8869 и 23,027 Å, 691,13 Å³, 5,102 г/см³ соответственно. Эти значения хорошо согласуются с литературными данными (*a* = 5,8844 Å, *c* = 23,05(3) Å, *V* = 691,20 Å³, $\rho_{\text{рент}}$ = 5,102 г/см³).

Установлено, что замещение 15% ионов Sr^{2+} , ионный радиус *r* которых равен 1,20 Å, меньшими по размеру ионами Ca^{2+} (r = 1,04 Å) приводит к уменьшению параметра а на 0,049% и увеличению параметра с, объема элементарной решетки V на 0,23 и 0,12% соответственно. Для твердых растворов ферритов Sr_{1-x}Pr_xFe_{12-x}Co_xO₁₉, $(Sr_{0.85}Ca_{0.15})_{1-r}Pr_{r}Fe_{12-r}Co_{r}O_{19}$ увеличение степени замещения х ионов щелочноземельных элементов Sr^{2+} , Ca^{2+} меньшими по размеру ионами Pr^{3+} (r = 1,00 Å) и ионов Fe^{3+} (r = 0,67 Å) большими по размеру ионами Co^{2+} (r = 0.78 Å) приводит к уменьшению параметра а и увеличению параметра с и объема элементарной решетки V. Следовательно, в исследованных системах $Sr_{1-x}Pr_{x}Fe_{12-x}Co_{x}O_{19}$, $(Sr_{0.85}Ca_{0.15})_{1-x}Pr_{x}Fe_{12-x}Co_{x}O_{19}$ увеличение степени замещения х приводит к уменьшению межионных расстояний катион ион кислорода по направлению оси а и к увеличению таких же межионных расстояний по направлению гексагональной оси с. При этом степень гексагональности с/а однофазных образцов ферритов $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ постепенно увеличивается по уравнениям: c/a = 3,918 + 0,0961x, c/a = 3,9224 + 0,0548x.

Измерения удельной намагниченности о, проведенные при температурах 6 и 300 К в

магнитных полях до 14 T, показывают, что намагниченность насыщения исследуемых ферритов достигается в поле около 3 T, выше которого наблюдается небольшое безгистерезисное возрастание намагниченности. По полученным при температурах 6 и 300 К петлям гистерезиса определяли удельную намагниченность насыщения σ_s и коэрцитивную силу $_{\sigma}H_C$, для однофазных образцов намагниченность насыщения n_s , выраженная в магнетонах Бора (μ_B) на одну формульную единицу феррита, рассчитана по формуле (1):

$$n_s = \frac{\sigma_s M}{5585} \,, \tag{1}$$

где M – молярная масса соответствующего феррита; 5585 – величина, равная произведению магнетона Бора (μ_B) на число Авогадро. Полученные результаты для ферритов исследуемых систем представлены в табл. 1, 2.

Из данных табл. 1 следует, что для ферритов $Sr_{1-x}Pr_{x}Fe_{12-x}Co_{x}O_{19}$ возрастание степени замещения х до 0,2 приводит к увеличению намагниченности насыщения n_s при 6 К от величины 19,79 µ_в для SrFe₁₂O₁₉ до 20,31 µ_в. При дальнейшем увеличении *х* намагниченность *n*_s уменьшается (x = 0,3, $n_s = 20,10 \mu_B$). Увеличение намагниченности n_s для ферритов при x = 0,2 на 0,52 $\mu_{\rm B}$ по сравнению с намагниченностью $SrFe_{12}O_{19}$ показывает, что ионы Co^{2+} , магнитный момент которых равен 3 µ_B, располагаются в А-подрешетке. В соответствии с двухподрешеточной моделью Гортера [7] намагниченность феррита стронция SrFe₁₂O₁₉ равняется разности магнитных моментов Вподрешетки, в которой расположены 8 ионов Fe³⁺, и А-подрешетки с четырьмя ионами Fe³⁺, магнитный момент которых равен 5 µ_В. Если ионы Со²⁺ при образовании твердого раствора феррита Sr_{0.8}Pr_{0.2}Fe_{11.8}Co_{0.2}O₁₉ располагаются в А-подрешетке, то для этого феррита теоретическое значение n_s можно выразить следующей формулой: $n_s = (8 \cdot 5) - (3, 8 \cdot 5 + 0, 2 \cdot 3) =$ $= 20,40 \ \mu_{\rm B}.$

Таблица 1

Намагниченность насыщения формульной единицы (ns), удельная намагниченность
насыщения (σ _s), коэрцитивная сила (_σ H _C) ферритов системы Sr _{1-x} Pr _x Fe _{12-x} Co _x O ₁₉
при температурах 6 и 300 К

x	T = 6 K			<i>T</i> = 300 K		
	$n_s, \mu_{\rm B}$	$_{\sigma}H_{C}, \Im$	$σ_s$, $\Gamma c \cdot c M^3 / \Gamma$	$n_s, \mu_{\rm B}$	$_{\sigma}H_{C}, \Im$	$σ_s$, $\Gamma c \cdot c M^3/\Gamma$
0	19,79	2700	104,10	15,79	3700	83,06
0,1	20,16	3090	105,48	16,23	4240	84,92
0,2	20,31	3200	105,71	16,31	4320	84,89
0,3	20,10	2990	104,07	15,20	4120	78,70
0,4	—	2020	97,91	—	3190	75,72
0,5	_	1870	95,26	-	2950	73,27

T-6	2
гаолица	2

	T = 6 K			T = 300 K		
x	n_s, μ_B	$_{\sigma}H_{C}, \Im$	$σ_s$, $\Gamma c \cdot c m^3 / \Gamma$	n_s, μ_B	$_{\sigma}H_{C}, \Im$	$σ_s$, $\Gamma c \cdot c M^3/\Gamma$
0	19,81	2800	104,91	15,84	3870	83,88
0,1	20,19	3070	106,28	16,19	4300	85,22
0,2	20,28	3250	106,12	16,27	4370	85,13
0,3	20,15	3090	104,81	15,12	4210	78,65
0,4	-	2040	98,10	-	3100	76,79
0,5	-	2010	94,95	-	3010	74,49

Намагниченность насыщения формульной единицы (n_s) , удельная намагниченность насыщения (σ_s) , коэрцитивная сила $({}_{\sigma}H_{C})$ ферритов системы $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ при температурах 6 и 300 К

Эта величина намагниченности n_s для феррита Sr_{0.8}Pr_{0.2}Fe_{11.8}Co_{0.2}O₁₉ на 0,4 µ_В больше, чем для SrFe₁₂O₁₉. Экспериментально полученное увеличение n_s для этого твердого раствора равняется 0,52 µ_в, что подтверждает сделанное нами предположение о размещении ионов Co^{2^+} в А-подрешетке феррита Sr_{0.8}Pr_{0.2}Fe_{11.8}Co_{0.2}O₁₉. Данные по намагниченности насыщения n_s при 6 К ферритов $(Sr_{0.85}Ca_{0.15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, приведенные в табл. 2, показывают, что замещение 15% Sr²⁺ ионами Ca²⁺ не приводит к изменению распределения Со²⁺ между А- и В-подрешеткой.

При температуре 300 К величина намагниченности насыщения n_s ферритов системы Sr_{1-x}Pr_xFe_{12-x}Co_xO₁₉ (табл. 1) при увеличении степени замещения x до 0,2 постепенно увеличивается от 15,79 µ_B для SrFe₁₂O₁₉ до 16,31 µ_B и при дальнейшем увеличении x намагниченность насыщения n_s уменьшается. Для кальцийсодержащих ферритов при температуре 300 К (табл. 2) наблюдается аналогичная зависимость n_s от x.

В исследуемых системах коэрцитивная сила ($_{\sigma}H_{C}$) (табл. 1, 2) достигает максимального значения при x = 0,2 при температурах 6 и 300 К. Так, для ферритов системы Sr_{1-x}Pr_xFe_{12-x}Co_xO₁₉ увеличение степени замещения x до 0,2 приводит при температурах 6 и 300 К к увеличению коэрцитивной силы $_{\sigma}H_{C}$ от 2700 Э (T = 6 K), 3700 Э (T = 300 K) для SrFe₁₂O₁₉ до 3200 Э (T = 6 K) и 4320 Э (T = 300 K) для Sr_{0,8}Pr_{0,2}Fe_{11,8}Co_{0,2}O₁₉. Для кальцийсодержащих ферритов $_{\sigma}H_{C}$ возрастает от 2800 Э (T = 6 K), 3870 Э (T = 300 K) для Sr_{0,85}Ca_{0,15}Fe₁₂O₁₉ до 3250 Э (T = 6 K) и 4370 Э (T = 300 K) для (Sr_{0,85}Ca_{0,15})_{0,8}Pr_{0,2}Fe_{11,8}Co_{0,2}O₁₉.

Следует отметить (табл. 1, 2), что замещение части ионов Sr^{2+} ионами Ca^{2+} приводит к возрастанию коэрцитивной силы. Так, при 300 К коэрцитивная сила _о H_C феррита SrFe₁₂O₁₉ увеличивается на 4,6% при замещении 15% Sr²⁺ ионами Ca²⁺, а для $Sr_{0,8}Pr_{0,2}Fe_{11,8}Co_{0,2}O_{19}$ такое замещение увеличивает коэрцитивную силу на 1,1%.

Заключение. Ввиду того, что намагниченность насыщения n_s при комнатной температуре для ферритов систем $Sr_{1-x}Pr_xFe_{12-x}Co_xO_{19}$, $(Sr_{0,85}Ca_{0,15})_{1-x}Pr_xFe_{12-x}Co_xO_{19}$ при увеличении степени замещения x до 0,2 увеличивается на 3,3 и 2,7%, а коэрцитивная сила ${}_{\sigma}H_{C}$ на 16,7 и 12,9% соответственно, то можно полагать, что постоянные магниты из ферритов исследованных систем при x = 0,1-0,2 будут иметь энергетическое произведение (*BH*)_{тах} выше, чем у магнитов из ферритов SrFe₁₂O₁₉ Sr_{0.85}Ca_{0.15}Fe₁₂O₁₉.

Литература

1. Технология производства материалов магнито-электроники / Л. М. Летюк [и др.]; под общ. ред Л. М. Летюка. – М.: Металлургия, 1994. – 416 с.

2. Yamamoto, H. Magnetic properties of anisotropic sintered magnets using Sr - La - Co system powders by mechanical compounding method / H. Yamamoto, G. Obara // J. of the Japan Society of Powder and Powder Metallurgy. - 2000. - Vol. 47. - P. 796-800.

3. Structural and magnetic properties of hydrothermally synthesised $Sr_{1-x}Nd_xFe_{12}O_{19}$ hexagonal ferrites / H. Mocuta [et al.] // J. of Alloys and Compounds. – 2004. – Vol. 364, Iss. 2. – P. 48–52.

4. Influence of the presence of Co on the rare earth solubility in M-type hexaferrite powders / L. Le-chevallier [et al.] // J. of Magnetism and Magnetic Materials. – 2007. – Vol. 316, Iss. 2. – P. e109–e111.

5. On the solubility of rare earths in M-type $SrFe_{12}O_{19}$ hexaferrite compounds / L. Lechevllier [et al.] // J. of Phys.: Condens. Matter. – 2008. – Vol. 20. – P. 175203–175212.

6. Шаскольская, М. П. Кристаллография / М. П. Шаскольская. – М.: Высш. шк., 1976. – 391 с.

7. Гортер, Е. В. Намагниченность насыщения и кристаллохимия ферримагнитных окислов / Е. В. Гортер // Успехи физ. наук. – 1955. – Т. 57, № 2. – С. 273–346.

Поступила 31.03.2010