УДК 547.598.3

В. Л. Флейшер, доцент (БГТУ); И. Л. Лавринович, студент (БГТУ)

ВЛИЯНИЕ СОЛЕЙ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ НА СТЕРЕОСЕЛЕКТИВНОСТЬ ВОССТАНОВЛЕНИЯ ВЕРБЕНОНА

Рассмотрено влияние солей металлов лантаноидной группы на селективность восстановления вербенона $NaBH_4$. Установлено, что использование солей $Ce(NO_3)_3 \times 7H_2O$, $La(NO_3)_3 \times 6H_2O$, $Er(CH_3COO)_3 \times 4H_2O$ и $Y(NO_3)_3 \times 6H_2O$ позволяет повысить содержание *цис*-вербенола в продуктах восстановления до 79–90% и значительно снизить количество вербанонов и вербанолов до (4–15%).

The influence of the metals'salts of the lantanoid group on selectivity of NaBH₄ verbenone restoration has been considered. It has been established that the use of $Ce(NO_3)_3 \times 7H_2O$, $La(NO_3)_3 \times 6H_2O$ $Er(CH_3COO)_3 \times 4H_2O$ and $Y(NO_3)_3 \times 6H_2O$ salts allows to increase the contents of *cis*-verbenol in products of restoration up to 79–90% and considerably decrease the quantity of verbanones and verbanols to (4–15%).

Введение. *Цис*-вербенол является ценным полупродуктом для синтеза многих душистых веществ, таких как цитраль, ментол, линалоол, гераниол, нерол, а также многих лекарственных препаратов, что обусловлено их высокой биологической активностью и антиоксидантными свойствами [1]. Вторичные продукты на основе *цис*- и *транс*-вербенолов обладают различными физико-химическими и органолептичесими свойствами, а также, в связи с пространственной изомерией, образуются с различными количественными выходами.

вербенон иис-вербенол транс-вербенол

Основным методом получения вербенолов является восстановление вербенона. Однако существующие восстановители не позволяют получать чистые стереоизомеры, что вызывает трудности с выделением отдельных изомеров из рацемической смеси.

Одним из известных путей синтеза *транс*вербенола является окисление α-пинена тетраацетатом свинца в неполярном растворителе [2]. Образующийся *цис-*2-ацетоксипин-3-ен при дальнейшей обработке ледяной уксусной кислотой претерпевает аллильную перегруппировку с образованием *транс*вербенилацетата, который подвергают либо восстановлению алюмогидридом лития или омылению спиртовым раствором гидроксида калия с получением *транс*вербенола с выходами 98 и 89% соответственно.

Исходным веществом для получения *цис*вербенола служит вербенон, который является одним из основных продуктов жидкофазного окислении α-пинена кислородом [3]. В качестве восстановителей вербенона, как правило, применяют боргидрид натрия NaBH₄ или алюмогидрид лития LiAlH₄.

Применение боргидрида натрия [4-6] приводит к недостаточной селективности восстановления. Продукты содержат смесь, состоящую из цис-вербенола (до 47%) и трансвербенола (до 22%). Кроме этого, протекают побочные процессы восстановления, при которых образуются насыщенные спирты - вербанолы и насыщенные кетоны – вербаноны. Это объясняется тем, что α,β-ненасыщенные кетоны, в частности вербенон, имеют два возможных направления для нуклеофильной атаки ионами гидрида металла (рисунок). Атака по карбонильному атому углерода приводит к образованию аллильного спирта, а по β-углеродному атому дает енол соответствующего насыщенного кетона, который может быть в дальнейшем восстановлен до насыщенного спирта. Поэтому для получения чистого иисвербенола необходима дополнительная очистка от побочных продуктов, вначале перекристаллизацией, например, из пентана, а затем сублимацией выделенного продукта.

Использование алюмогидрида лития [7–10] позволяет увеличить селективность процесса, однако, данный восстановитель обладает рядом недостатков. Это дорогостоящий реагент, с которым необходимо работать только в инертной атмосфере в среде абсолютных не гидроксилсодержащих растворителей.

Для улучшения стереоселективности восстановления α , β -енонов боргидридом натрия эффективным является использование солей металлов лантаноидной группы [11]. Было установлено, что присутствие в реакционной смеси ионов Ln^{3+} главным образом катализирует разложение $\mathrm{BH_4}^-$ гидроксилсодержащим растворителем (из которых чаще всего используют метиловый или изопропиловый спирты) с образованием алкоксиборгидридов, которые ответственны за селективность. Кроме этого, присутствие ионов Ln^{3+} усиливает аксиальную атаку на циклогексановую систему, что также повышает селективность восстановления.

Основные направления восстановления вербенона гидридами металлов

В работе рассмотрены некоторые факторы, влияющие на стереоселективность вербенона, а также отмечено, что присутствие Ce(NO₃)₃ способствует селективному восстановлению вербенона в *цис*-вербенол. Авторами установлено, что значительное понижение температуры процесса восстановления ниже 0°С практически не влияет на стереоселективность. Наилучшие результаты были получены при использовании в качестве растворителя смеси изопропиловый спирт – вода в соотношении 5 : 1, при температуре –10°С и продолжительности 1,5 ч. При этом получен продукт восстановления, имеющий следующий состав, %: *цис*-вербенола – 94, *мранс*-вербенола – 2, вербанола и вербанона 4%.

Благотворное влияние Ce^{3+} было выявлено и при восстановлении других α , β -енонов, в частности карвона [12]. Установлено, что использование реагента Luche (NaBH₄ – CeCl₃×7H₂O) приводит к стереоселективному восстановлению (–)-карвона при комнатной температуре к (–)-карвеолу с выходом 90% и чистотой изомера 98%.

В более ранней работе [13] в качестве «модификаторов» боргидрида натрия при исследовании стереоселективности восстановления циклопентенона использовались соли La^{3+} , Ce^{3+} , Sm^{3+} , Eu^{3+} , Yb^{3+} , Y^{3+} . Установлено, что наибольшим эффектом обладают катионы церия, самария и европия. При их использовании доля *цис*-изомеров составляла 93–97%, а в качестве побочных продуктов восстановления обнаружен только насыщенный спирт.

Таким образом, из зарубежной литературы известно о благотворном влиянии солей церия (III) на стереоселективность восстановления вербенона и отсутствует какая-либо информация об использовании других солей редкоземельных элементов. Поэтому целью настоящей работы является изучение влияния солей металлов лантаноидной группы на стереоселективность восстановления вербенона.

Основная часть. При выполнении данной работы для анализа исходного вербенона и

продуктов восстановления использовался метод газожидкостной хроматографии (ГЖХ).

Анализ проводили на хроматографе «Цвет-800» с пламенно-ионизационным детектором на капиллярной колонке из нержавеющей стали длиной 30 м и внутренним диаметром 0,33 мм, неподвижная фаза — OV-101. Анализ осуществляли при температуре термостата колонки 80°С, испарителя — 240°С. Скорость газа-носителя (азот) составляла 50 мл/мин, водорода — 28 мл/мин, воздуха — 145 мл/мин. Избыточное давление на входе в колонку — 30 кПа.

В работе использовали вербенон, полученный окислением α-пинена кислородом воздуха в присутствии стеарата кобальта [3] при температуре 80°С [14]. По данным анализа ГЖХ вербенон содержал 96% основного вещества.

В качестве солей металлов лантаноидной группы использовали $Ce(NO_3)_3 \times 7H2O$, $La(NO_3)_3 \times 6H_2O$, $Er(CH_3COO)_3 \times 4H_2O$ и $Y(NO_3)_3 \times 6H_2O$.

Восстановление осуществляли по методике согласно [15]. В трехгорлой колбе на 250 мл, снабженной термометром, холодильником, капельной воронкой, магнитной мешалкой, растворяли 1,25 г (0,033 моль) NaBH₄ в 50 мл 20%ного водного раствора изопропилового спирта и охлаждали до температуры минус 2÷0°C. Отдельно готовили раствор 0,0033 моль соли металла лантаноидной группы в 5 г (0,033 моль) вербенона. Смешение реагентов проводили, добавляя раствор соли металла лантаноидной группы в вербеноне к спиртовому раствору NaBH₄, поддерживая температуру ниже 0° C. Смешение спиртового раствора NaBH₄ с Ce(NO₃)₃×7H₂O приводило к повышению температуры реакционной массы до 15-20°С и интенсивному выделению водорода. Такая система обладала недостаточной активностью и стереоселективностью. Перемешивание продолжали 3 ч. По окончании реакции избыток гидрида разрушали прибавлением разбавленной HCl (5%-ный водный раствор) до прекращения выделения водорода.

Используемая соль	Содержание компонентов в восстановленном продукте, %		
	исходный вербенон	<i>цис-/транс</i> -вербенолы	вербанолы и вербаноны
Без соли	3	32 / 18	47
$Ce(NO_3)_3 \times 7H_2O$	2	90 / 4	4
$La(NO_3)_3 \times 6H_2O$	2	87 / 4	7
Er(CH ₃ COO) ₃ ×4H ₂ O	1	82 / 6	11
$Y(NO_3)_3 \times 6H_2O$	2	79 / 4	15

Результаты восстановления вербенона NaBH₄ в присутствии металлов лантаноидной группы

Затем реакционную смесь переносили в делительную воронку, разбавляли водой и тщательно экстрагировали диэтиловым эфиром ($3\times50\,$ мл). Объединенные эфирные вытяжки промывали насыщенным раствором NaCl, сушили безводным Na₂SO₄. После упаривания растворителя и охлаждения до комнатной температуры образовывалась кристаллическая масса с выходом 4,0–4,5 г, которую подвергали газохроматографическому анализу. Результаты анализа представлены в таблице.

Заключение. Анализ полученных результатов показал, что из применяемых солей наибольшее влияниее на стереоселективное восстановление вербенона оказывает наличие соли церия. При этом необходимо отметить, что присутствие солей металлов лантаноидной группы в целом повышает выход *цис*- и снижает количество *транс*- изомеров, а также содержание насыщенных кетонов и спиртов в продуктах восстановления. Таким образом, из исследуемых нами солей, установлено, что наибольшей селективностью обладает соль церия, что подтверждается многочисленными литературными данными по восстановлению других ненасыщенных кетонов.

Литература

- 1. Ильина, И. И. Каталитический синтез душистых веществ и растительных монотерпенов / И. И. Ильина, Н. В. Максимчук, В. А. Семиколенов // Рос. хим. журнал. 2004. Т. XLVIII. № 3. С. 38—53.
- 2. Whithman, G. H. The Reaction of α -Pinene with Lead Tetraacetate / G. H. Whithman // J. Chem. Soc. -1961. -P. 2232-2236.
- 3. Способ получения вербенона: пат. 2250208 РФ, МПК С 07 С 49 / 623, 45 / 27 / Л. Л. Фролова, А. В. Кучин, И. В. Древаль, М. В. Пантелеева, И. Н. Алексеев; заявитель Инст. Химии. Коми науч. центра Уральского отд. РАН. № 2003121762/04; заявл. 14.07.03; опубл. 20.04.05.
- 4. Cooper, M. A. Stereochemistry of the Verbenols / M. A. Cooper, J. R. Salmon, D. Whittaker // J. Chem. Soc. (B). 1967. P. 1259–1261.
- 5. Mori, K. Synthesis of Optically Pure (+)-*trans*-Verbenol and Its Antipode, the Pheromone of *Dendroctonus* Bark Beetles / K. Mori // Agr. Biol. Chem. 1976. Vol. 40. № 2. P. 415–418.

- 6. Jackson, W. R. The Occurrence of 1,2- or 1,4-Addition in the Reduction of Some α , β -Unsaturated Ketones with Metal Hydrides / W. R. Jackson, A. Zurqiyan // J. Chem. Soc. 1965. P. 5280–5287.
- 7. Mori, K. Synthesis of Optically Pure (1S, 4S, 5S)-2-Pinen-4-ol (*cis*-Verbenol) and Its Antipode, the Pheromone of *Ips* Bark Beetles / K. Mori // Agr. Biol. Chem. $-1976. \text{Vol}. 40. \text{N}_{2} \text{ 8}. \text{P}. 1611-1615.$
- 8. Reece, C. A. Synthesis of the principial components of sex attractant from male *Ips confusus* frass: 2-methyl-6-methylene-7-octen-4-ol and (+)-cis-verbenol / C. A. Reece, J. O. Rodin // Tetrahedron. Vol. 24. P. 4249–4256.
- 9. Nishino, C. Conformational Andlysis of Verbenols and Related Alcohols by PMR Spectra with a Chemical Shift Reagent / C. Nishino, H. Takayanagi // Agr. Biol. Chem. 1979. Vol. 43. № 11. P. 2323–2329.
- 10. Regan, A. F. The preparation and stereochemistry of the verbanols and verbanones / A. F. Regan // Tetrahedron. Vol. 25. P. 3801–3805.
- 11. Благотворное влияние Се^{III} на стереоселективность восстановления вербенона в *цис*вербенол / Л. Л. Фролова [и др.] // Известия Академии наук. Сер. химическая. 2003. № 2. С. 475–478.
- 12. Валеев, Р. Ф. Синтез и некоторые превращения (–)-карвеола / Р. В. Валеев, Н. С. Востриков, М. С. Мифтахов // Журн. орган. химии. 2009. Т. 45. Вып. 6. С. 828–831.
- 13. Gemal, A. Lanthanoid in Organic Synthesis. 6. The Redaction of α -Enones by Sodium Borohydride in the Presence of Lanthanoid Chlorides: Synthetic and Mechanistic Aspects / A. Gemal // J. Am. Chem. Soc. 1981. Vol. 103. P. 5454–5459.
- 14. Флейшер, В. Л. Исследование процесса жидкофазного окисления α-пинена кислородом воздуха / В. Л. Флейшер // Труды БГТУ. Сер. IV, Химия, технология орган. в-в и биотехнология. 2009. Вып. XVII. С. 35—38.
- 15. Способ получения *цис*-вербенола: пат. 2189967 РФ, МПК С 07 С 29 / 143, С 07 С 35 / 28 / Л. Л. Фролова [и др.]; заявитель Инст. Химии. Коми науч. центра Уральского отд. РАН. № 2001112749/04; заявл. 14.05.01; опубл. 27.09.02.

Поступила 26.03.2010