При выводе данных уравнений учитывались все поры в дрешие, как в полстях клеток, так и в клеточных стенках. При исствующей технке прессования поры в клеточных стенках плить певозможно, это следует иметь в виду при использоват уравнений.

Литература

П. Г. Вихров, С. И. Карпович. «Оценка качества пропитки древесины постими. «Деревообр. пром.», 1971, № 5.

Пауль Э. Э.

попросу стабилизации размеров древесины фенолоспиртами.

В ранее опубликованных работах [1] указывалось, что пропревесины растворами фенолоспиртов значительно уменьот се влажностные деформации. Например, при водопоглощепразбухание модифицированной фенолоспиртами древесины об раз меньше, чем непропитанной, а в условиях переменного пожнения на открытом воздухе модифицированная древесина пресски не изменяет своих размеров.

И плетоящей статье делается попытка более подробно рас-

присходящих при этом.

В табл. І приведены данные по изменению привеса, плотнопразмеров древесины в процессе ее модификации фенолопрами, а также разбухание модифицированной древесины в пропиточного раствора феноло-

По приведенных данных обращает на себя внимание то обптольство, что привес полимера в образцах значительно польство, что привес плотности этих же образцов. Так, напмор, если при пропитке древесины березы 5%-ным раствоприполоспиртов с последующим их осмолением в древесине приполоспиртов с последующим их осмолением в древесине при при термообработки, привес полимера в образцах сопил 12%, то плотность этих образцов возросла всего на При привес образцов указывает на то, что после

Изменение плотности, привеса и размеров образцов в процессе модификации растворами фенолоспиртов (ФС) и разбухание модифицированной древесины в воде

Характер обработки древесины	Плотность древесины, г/см		Увеличе-	Привес смолы в	Увеличение размеров образцов по отно- шению к их размерам в абсолютном сухом состоянии до пропитки, %						Максимальное раз- бухание модифици-		
	нсходной	модифици- рованной	ние плотнос- ти, %	образцах после мо- дифика- ции, %	после пронитки			после проп. и терм. обраб.			рованной древесины в воде, %		
					t	r	υ	t	r	v	t	r	υ
Контроль	0,633	_				_	_	_	_	_	12,3	8,4	21,7
Пропитка раствором ФС:											300		
5 %- ным	0,632	0,656	3,8	12,0	13,3	9,3	23,8	4,5	3,7	8,4	6,9	5,0	12,2
10%-ным	0,642	0,679	5,7	21,2	14,1	9,8	25,3	7,3	6,4	14,2	4,4	3,1	7,6
15%-ным	0,643	0,691	7,4	25,3	14,4	10,2	26,1	8,6	7,2	16,4	3,5	2,5	6,1
20%-ным	0,643	0,7111	10,5	31,2	14,8	10,2	26,5	10,2	7,9	18,9	2,7	2,0	4,8
30%-ным	0,644	0,735	14,1	37,9	14,9	10,3	26,7	1.1,2	8,7	20,8	2,4	1,8	4,2
40%-ным	0,638	0,776	2.1,7	48,4	14,9	10,0	26,7	11,7	8,8	21,5	2,1	1,6	3,7
50%-ным	0,634	0,869	32,4	61,4	15,0	10,3	26,8	11,9	9,2	22,2	2,1	1,6	3,7

Примечание. t, r, v — разбухание древесины соответственно в тангенциальном, радиальном направлениях и по объему.

поличикации древесины объем ее увеличивается. Это происхона в процессе пропитки древесины растворами фенолоспиртов в счет увеличения поперечных размеров образца. Увеличение намеров образцов вдоль волокон весьма незначительно, им

пренебречь.

Интересно отметить, что разбухание древесины в растворах вислоспиртов превышает разбухание в воде. Например, если примы исходной древесины в воде разбухали по объему на 17% по отношению к первоначальным размерам, то в 50% ном при поре объемное разбухание древесины составило 26,8%. Дотом разбухание между разбуханием в воде и растворах фетом разбуханием в воде и растворах фетом при 5% ной концентрации феном при 15% ной концентрации 15% ной концентрации

Более значительное разбухание древесины в процессе пропо растворами фенолоспиртов объясняется тем, что эти расторы обладая более высокой по сравнению с водой полярнопо большей степени ослабляют силы взаимного притяженежду субмикроструктурными элементами древесины с обпромежутков между ними, что позволяет положулам фенолоспиртов проникнуть глубже в субмикрострук-В результате последующей термической происходит осмоление фенолоспиртов и образование вышера в клеточной стнеке. Доказательством наличия полипри в клеточной стенке может служить то, что модифицированпо воразцы в абсолютно сухом состоянии не приобретают присимчальных размеров, так как полимер, присутствующий в пред тенке древесины, препятствует усадке образцов в протермообработки. Увеличение линейных размеров и объ-🚾 модифицированной древесины по сравнению с размерами и помочь исходной может быть весьма значительным, достигая, пример, для древесины березы при ее пропитке 50%-ным рафенолоспиртов в радиальном направлении 9,2%, в тан-полнемое различие между размерами образцов до модификапо после нее вполне достоверно. Таким образом, стабилизапри пропитке ее фенолоспирими обуславливается, главным образом, фиксацией ее размепо выбухшем состоянии, а весь механизм стабилизации можпри пропитке древесины При пропитке древесины растворами фенолоспиртов она разбухает и пропиточин маствор проникает в субмикроскопические пространства под на под негот негот на под негот не образующийся полимер фиксируется в субмикрооприсских пространствах, удерживая субмикроскопические при древесины в разбухшем состоянии. В дальнейшем при применни модифицированной древесины в воду или помещепро среду с высокой относительной влажностью, она разбухает при при при меньшей степени, чем необработанная.

11 мой связи большой теоретический и практический интерес вопрос о предельно возможном стабилизирующем

эффекте фенолоспиртов. Получение абсолютной стабилизации размеров древесины при ее пропитке фенолоспиртами, в частности, и, по-видимому, синтетическими смолами вообще практически невозможно, так как фенолоспирты или другие синтетические смолы не могут проникнуть в те субмикроскопически пространства древесины, размеры которых меньше молекул пропитывающих веществ, но соизмеримы с молекулами воды.

Для принципиального выяспения вопроса о возможности про никновения молекул фенолоспиртов в клеточную стенку древе сины и их размещения между элементами субмикростроени древесины нами был произведен приближенный расчет размеро молекул различных фенолоспиртов и их исходных компонентов Методика расчета основана на теории строения органически веществ и подробно изложена в монографии Т. И. Темниково «Курс теоретических основ органической химии» [2]. Согласи этой методике в определенном масштабе с учетом взаимног расположения атомов в молекуле, их ковалентного и вандерва альсового радиусов были схематически вычерчены модели молекул фенолоспиртов и их исходных компонентов, после чего и масштабу определялись размеры этих молекул.

Расчет показал, что размеры молекул фенолоспиртов находятся в пределах от 7 Å (монометилолфенолы) до 10 Å (триметилолфенол), т. е. молекулы фенолоспиртов по своему размер

в 1,8—2,6 раза больше, чем молекулы воды (3,86 A). Отсюд следует, что полного заполнения субмикроскопических просуранств, куда могут проникать молекулы воды, фенолоспиртам быть не может из-за значительно большего размера молеку последних.

Сравнивая размеры молекул фенолоспиртов и их исходин компонентов с диаметрами субмикрокапилляров древесин устанавливаем принципиальную возможность проникновень фенолоспиртов в эти капилляры. По-видимому, в лучше случ фенолоспирты могут проникать в промежутки между микрофириллами, расстояние между которыми, по данным Уордрог

[2], составляет 70—100 А. Внутрь микрофибрилл неможет пр никнуть достаточное количество фенолоспиртов, так как расстоиия между макромолекулами целлюлозы здесь слишком мал Даже при условии проникновения фенолоспиртов в указанив пространства их осмоление и образование пространственно полимера не может произойти из-за отсутствия свободы пер мещения молекул. Чтобы реакция поликонденсации фенолоспитов протекала нормально, необходимо свободное передвижен их молекул. Только при этом условии в результате нагреван они могут ориентироваться одна относительно другой, прихов соприкосновение реакционноспособными участками: гидре сильная группа одной молекулы с активным атомом водоро другой молекулы. Поэтому в тончайших субмикроскопическ капиллярах, где свобода передвижения молекул фенолоспирт

риничена, реакция осмоления фенолоспиртов весьма затрудна В последнем случае можно ожидать реакции взаимодейстна фенолоспиртов или их исходных компонетов с компонентами решенны,

Гасим образом, исходя из наличия в древесине субмикроинтранств недоступных для проникновения фенолоспиртов, но оттранств педоступных для проникновения воды, а также из-за неблагоприних условий их осмоления в пространствах, где свободное речешение молекул фенолоспиртов затруднено, можно счиито абсолютной стабилизации формы и размеров древесипропитанной фенолоспиртами или другими синтетическими пропитанной фенолоспиртами больше молекул воды, быть

Пр основании вышеизложенного попытаемся теоретически толошить хотя бы приблизительную, величину, на которую буралбухать древесина после ее модификации фенолоспир-

Кла известно, разбухание древесины происходит в результапо тощения ею гигроскопической влаги, которая состоит из вероционной (5—6%) и образующейся в результате капилприн конденсации — остальная влага (20—25%) [4]. Адсорбприня влага в процессе влагопоглощения заполняет в основна плиболее мелкие субмикрокапилляры, размеры которых

поше 45—50 A [5], т. е. те капилляры, в которых практически поможно осмоление фенолоспиртов. Следовательно, разбухапо превесины, вызываемое адсорбционной влагой, не может

по устранено путем ее пропитки фенолоспиртами.

1 сли принять во внимание линейный закон зависимости количеством влаги в древесине и ее разбуханием, то разыше, вызываемое только адсорбционной влагой, для древесин березы в тангенициальном направлении должно составить 2.0%. В действительности же разбухание модифицирование превесины в указанном направлении составляет приблизимого такую же величину 2,1% (см. табл. 1). Таким образом, периментально подтверждается, что пропитка древесины фетоспиртами позволяет устранить разбухание патуральной свесины, вызываемое только гигроскопической влагой, обратовстве в результате капиллярной конденсации, и не устраняет пероизменяемость, вызываемую адсорбционной влагой.

Литература

Э. Пауль. Снижение набухания древесины пропитанной растворами опосииртов. В сб.: «Вопросы лесоведения и лесоводства». Минск, 1965; пишние размероизменяемости древесины на открытом воздухе. В сб.: просы лесоводства и лесоэксплуатации», Минск, 1967; Физико-механиченой просы древесины, модифицированной фенолоспритами. В сб.: Пластиния и модификация древесины, Рига, 1970. [2] Т. И. Темникова. Курс пических основ органической химии. Л., 1962. [3] А. В. Wardrop. "НоІхницу", 8, 12, 1954. [4] Н. И. Никитин. Химия древесины и целлюлозы. Пр. 1962. [5] Н. Я. Солечник. О гигроскопичности древесины и ее основняетей. Тр. ЛТА им. С. М. Кирова, в. 67, Л., 1949.