СОСТАВ И СВОЙСТВА ГУМУСА ПОЧВ ПОД СОСНОВЫМИ НАСАЖДЕНИЯМИ

В настоящее время накоплен громадный экспериментальный материал по изучению природы гумусовых веществ, их роли в процессах почвообразования, особенностей и закономерностей гумусообразования в различных природных зонах. Основные сведения и выводы по этим вопросам изложены в монографиях И. В. Тюрина [8], М. М. Кононовой [5], а также статьях Л. Н. Александровой [2], В. В. Пономаревой [6] и др.

Для лесоводственной практики большой интерес представляют вопросы накопления гумуса и его качественного состава в зависимости от вида произрастающей растительности, условий увлажнения, почвообразующей породы и прочих факторов, так как познание этих закономерностей позволит более правильно подходить к разработке ряда мероприятий, направленных на повышение плодородия лесных почв.

Работ, проведенных в этом направлении, мало. Из них следует отметить исследования С. В. Зонна [4], Д. Ф. Соколова [7], Н. П. Бельчиновой [3], М. М. Абрамовой [1], дающие сравнительный анализ состава и свойств гумусовых веществ почв

под различными древесными породами.

Мы исследовали состав и свойства гумусовых веществ почв под сосновыми насаждениями в 3 типах леса: брусничном, орляково-черничном и кисличном. Работы проводились в Негорельском учебно-опытном лесхозе в естественных насажде-

ниях примерно одного возраста.

Групповой состав гумуса и его свойства определялись по методике, разработанной М. М. Кононовой и Н. П. Бельчиковой [3, 5]. Применялись свежеприготовленные смеси пирофосфата натрия и NaOH, извлекающие гумусовые вещества, связанные как с кальцием, так и с несиликатными формами железа и алюминия. Ниже приводим описание объектов исследования.

Первая пробная площадь расположена на верхней части склона в сосняке-брусничнике. Состав древостоя 10С, возраст 54 года, средние: высота 18,3 M, диаметр 19,4 CM, полнота 0,8, запас 230 M^3/ca . Подрост слабый — единично дуб, ель, береза. Подлесок — крушина, можжевельник. Травяной покров—брусника (cop^2) , черника (cop^1) , марьянник луговой (sp), ожика волосистая (sp), орляк (sp), вереск обыкновенный (sp) и др. Мхи — $Hypnum\ Schreberi\ Willd.,\ Hylocomium\ proliferum\ L.$

Почва дерново-подзолистая, слабооподзоленная, развивающаяся на супеси легкой песчанистой, подстилаемой рыхлым мелкозернистым песком. Мощность гумусового горизонта 14 см.

Вторая пробная площадь заложена в сосняке орляково-черничном. Положение пониженное со средневыраженной кочковатостью у пней. Состав древостоя 10С, возраст 62 (57) года, бонитет I, полнота 0,8; средние: высота 23,1м, диаметр 23,5 см. В подросте ель, дуб, береза. Подлесок из крушины, можжевельника, рябины. Травяной покров — черника (cop^2) , брусника (sp), кислица (cop^1) , ожика волосистая (sp), лапчатка узик (sp), линнея северная (cop^1) , ястребинка постенная (sp) и др. Моховой покров — (cop^2) $(cop^$

Почва дерново-подзолистая, среднеоподзоленная, с пятнами оглеения внизу, развивающаяся на супеси легкой пылевато-песчанистой, подстилаемой с глубины 0,7 м моренным су-

глинком. Мощность гумусового горизонта 18 см.

Третья пробная площадь заложена в сосняке кисличном. Местоположение пониженное со средневыраженной кочковатостью. Состав древостоя: І ярус 10С, возраст 55 лет, бонитет Іа, полнота 0,6, средние: высота 25,3 м, диаметр 27,8 см; 2-й ярус 9 Е1Ол (ч), высота 14,6 м, диаметр 14,1 см. Подрост из ели, дуба. В подлеске крушина, можжевельник, рябина. Травяной покров — кислица (cop^3) , копытель европейский (sp), майник двухлистный (cop^1) , сныть обыкновенная (cop^1) , щитовник игольчатый (sol) и др. Моховой покров развит слабо— $Politricum\ commune\ L.,\ Brachythecium\ rutabulum\ L.,\ Mnium\ affine\ Bland.$

Почва дерново-подзолистая, среднеоподзоленная, с пятнами оглеения внизу, развивающаяся на супеси пылевато-песчанистой, подстилаемой с глубины 0,7 м моренным суглинком. Мощность гумусового горизонта 18 см.

На основании данных табл. 1 можно отметить довольно высокую подвижность гумуса в почвах под сосновыми насаж-

дениями.

Так, количество органических веществ, переходящих в раствор при обработке почвы $0.1~H_2SO_4$ в перегнойном горизонте, составляет 4-8%, в подзолистом горизонте — до 20%. В эту группу веществ входят низкомолекулярные органические кислоты, активно участвующие в подзолообразовании [6].

В сосняках орляково-черничном и кисличном содержание этой фракции примерно равное, в сосняке брусничном отме-

чается некоторое ее увеличение.

Характерным для почв под сосновыми насаждениями является большое содержание гумусовых веществ, непрочно связанных с минеральной частью почвы и извлекаемых смесью пирофосфата натрия со щелочью (45—70%). Большое количество гумусовых веществ извлекается из почв сосняка-брусничника, меньше из почв сосняков орляково-черничного и кисличного. Это, по-видимому, связано с различиями в механическом

Состав гумуса почв (в % от общего содержания углерода)

	Гори~ зонт	Углерод						Из общего к-ва гуминовых кислот			
Тип леса		гумуса в неходной почве	орг. веществ, извле- каемых 0,1 н. Н ₂ SO ₄	орг. вешеств, извлек. смесью Na ₄ P O NaOH	гуминовых кислот	фульвокислот	С гум. С фульв.	свобод, и связ. с R ₂ O ₃ , %	связанных с Са, %	С остатка	
Сосняк-бруснич-	$\begin{bmatrix} A_1 \\ A_2 B_1 \\ A_2 \end{bmatrix}$		15,7	63,5	19,4 19,0 27,7	44,5	0,	43	100 100 100	нет нет нет	39,8 36,5 22,2
Сосняк орляково- черничный	$\begin{bmatrix} A_1 \\ A_2 \\ A_2 B_1 \end{bmatrix}$		12,9	51,6	22,1 16,1 16,6	35,5	0,	45	98,4 100 100	1,6 нет нет	54,9 48,4 41,7
Сосняк кисличный	$\begin{matrix} A_1 \\ A_2 B_1 \\ A_2 \end{matrix}$	1,17 0,17 0,18	11,8	52,9	18,8 17,6 13,9	35,3	0,	50	100 100 100	нет нет нет	45,0 47,1 50,0

составе, а следовательно, в способности закрепления гумусовых веществ.

Фракция нерастворимого остатка в описываемых почвах 25-50%.

В составе гумуса содержание фульвокислот значительно превышает содержание гуминовых кислот. Величина соотношения между гуминовыми кислотами и фульвокислотами в этих почвах меньше 1. Значительное увеличение количества гуминовых кислот и уменьшение фульвокислот отмечается в почвах сосняка орляково-черничного. Вглубь по почвенному профилю величина соотношения несколько уменьшается.

Как показывают результаты анализов, гуминовые кислоты в почвах сосновых насаждений представлены главным образом группой так называемых свободных, или подвижных, гуминовых кислот (связанные с несиликатными формами R_2O_3), извлекаемых из почвы однократной обработкой 0,1 н. NaOH без предварительного декальцинирования.

Отсутствует связь гуминовых кислот с кальцием. Исключение составляет почва сосняка орляково-черничного, где в перегнойном горизонте с Са связано 1,6% углерода гуминовых кислот.

Мы изучали свойства наиболее характерной в составе гумуса почв фракции гуминовых кислот. В выделенных препаратах гуминовых кислот были определены оптические свойства и порог коагуляции (отношение к электролитам).

Тип леса	Гори-	Значение оптической плотно- сти при длине волны, <i>мм</i>								
		656	610	584	536	508	453	413		
Сосняк-брусничник	A ₁ A ₂	0,30 0,06	0,38 0,12	0,49 0,16	0,63 0,22	0,85 0,34	1,23 0,47	1,66 0,66		
Сосняк орляково- черничный	A ₁ A ₂	0,45 0,06	0,56 0,11	0,72 0,15	0,90 0,23	1,18 0,33	1,69 0,46	2,05 0,63		
Сосняк кисличный	A ₁ A ₂	0,33 0,05	0,47 0,08	0,58 0,13	0,74 0,19	0,98 0,28	1,40 0,37	1,79 0,48		

Оптическая плотность гуматов натрия, выравненная по концентрации углерода, отражает степень конденсированности ароматического ядра гуминовых кислот этих почв. Более высоким значениям коэффициента ослабления света гуматами соответствует более широкое соотношение с/н.

Второй показатель — порог коагуляции — характеризует

степень дисперсности гуминовых кислот.

Данные определения оптической плотности приведены в табл. 2. Сравнение полученных данных с данными литературных источников [3, 5] показывает, что оптическая плотность гуминовых кислот почв под сосновыми насаждениями довольно высокая.

Наибольшей оптической плотностью характеризуются гуминовые кислоты почв под сосняком орляково-черничным, значительно меньше под сосняками брусничным и кисличным. Это, по-видимому, связано с различиями в биологической активности почв и условиями образования и разложения гумуса.

Данные о величине порога коагуляции почвенных гуматов представлены в табл. 3, из которой видно, что гуминовые кислоты почв характеризуются сравнительно высоким порогом коагуляции. Начало коагуляции происходит при 9—12 мг-экв на 1 л гумата, полная — только при внесении 19 и более мг-экв CaCl₂. Граница порога полной коагуляции выражена слабо. Исключение составляют гуминовые кислоты почв сосняка орляково-черничного. Здесь происходит полное выпадение гуматов при концентрации 11 мг-экв электролита.

Следовательно, гумусовые вещества почв под сосновыми насаждениями характеризуются большой подвижностью и пре-

обладанием фульвокислот над гуминовыми кислотами.

Фракция гуминовых кислот в почвах сосновых насаждений представлена главным образом группой свободных и подвижных гуминовых кислот, связанных с несиликатными формами

Порог коагуляции гуминовых кислот

Тип леса		Начало коа	гуляции	Полная колгулиция			
	Горизонт	время	СаС1 ₂ , мг- экв на 1 л раствора гумата	время	CaCl _g , меже на 1 л раствора гумата		
Сосняк- брусничник	A ₁	сразу через 2 час	11 9	через 4 час	23 (осаждение не совсем полное)		
Сосняк орляково- черничный	A ₁	сразу через 2 час	9 8	через 4 час	11 (осаждение совсем полное)		
Сосняк кисличный	A ₁	сразу через 2 час	12 10	через 4 час	19 (раствор слегка окрашен)		

R₂O₃. При этом гуминовые кислоты характеризуются значи-

тельной конденсированностью ядер молекул.

Наблюдаются значительные различия в составе и свойствах гумусовых веществ почв по типам леса. Различия связаны с условиями увлажнения и аэрации почв, их биологической активностью и пр.

ЛИТЕРАТУРА

1. М. М. Абрамова. В сб. «Микроорганизмы и органическое вещество почв». Изд-во АН СССР, 1961.

2. Александрова Л. Н. В сб. «Проблемы почвоведения». Изд-во

AH CCCP, 1962.

3. Бельчикова Н. П. В сб. «Микроорганизмы и органическое вещество почв». Изд-во АН СССР, 1961.

4. Зонн С. В. Влияние леса на почвы. Изд-во АН СССР, 1954.

5. Кононова М. М. Органическое вещество почвы. Изд-во АН СССР, M., 1963.

6. Пономарева В. В. В сб. «Проблемы почвоведения». Изд-во

AH CCCP, 1962.

7. Соколов Д. Ф. Влияние лесной растительности на состав гумуса почв различных природных зон. Изд-во АН СССР, М., 1962. 8. Тюрин И. В. Учение о почвенном гумусе. Сельхозгиз, 1937.

Секция лесной растительности при Белорусском технологическом институте им. С. М. Кирова

В. А. Морозов

СРАВНЕНИЕ КУЛЬТУРФИТОЦЕНОЗОВ СОСНЫ, созданных различными способами

Взаимоотношение искусственных насаждений и условий среды, особенно на нелесных площадях, может значительно отличаться от исторически сложившегося взаимовлияния