УДК 630^X 1

В.С.РОМАНОВ, проф., К.Ф.САЕВИЧ (БТИ)

БИОЛОГИЧЕСКАЯ ПРОДУКТИВНОСТЬ НИЖНИХ ЯРУСОВ РАСТИТЕЛЬНОСТИ В СОСНЯКАХ ЧЕРНИЧНЫХ И СОСНЯКАХ ПО БОЛОТУ

В ряде работ по вопросам биологической продуктивности фитоценозов Белоруссии отражены также проблемы, связанные с изучением нижних ярусов растительности под пологом сосняков черничных и по болоту. В этом плане наиболее значительные исследования проведены: И.Д.Юркевичем, Э.П.Ярошевич [1], А.В.Бойко, Е.А.Сидоровичем, А.Б.Моисеевой [2], А.В.Бойко, Н.В.Смольским, К.М.Евсиевичем, И.В.Лознухо, Н.М.Арабей, К.К.Кирковским, Т.П.Суровой, А.К.Счастным [3].

Однако продуктивность живого напочвенного покрова, подроста и подлеска в данных типах при побочных пользованиях лесом изучена недостаточно. В связи с этим нами были заложены пробные площади (ПП) в сосняках черничных различного возраста средней полноты и сосняках на низинных, переходных и верховых болотах в основном на территории Негорельского учебно-опытного и Узденского лесхозов.

Типы болот выделялись по классификации, предложенной профессором Л.П.Смоляком [4], согласно которой определение фитомассы надземных частей растений и закладка пробных площадей производились по общепринятым методикам [5 — 7].

В данной работе приводятся результаты исследований по определению биологической продуктивности надземных частей подроста, подлеска (высотой до 5 м) и живого напочвенного покрова под пологом насаждений в зависимости от возраста древостоя и характера увлажнения. Подрост в сосняках черничных представлен елью, дубом, березой, осиной. Основную фитомассу образует ель, удельный вес которой составляет 84 — 86% от общей массы подроста. Наименее представлена осина. Ее максимальное количество отмечено в сосняках ТУ класса возраста (9,9 кг/га, табл. 1).

В подлеске доминируют крушина, можжевельник. Рябина отмечена на пробных площадях лишь в старших классах возраста. Фитомасса подроста и подлеска с возрастом древостоя увеличивается. В травяно-кустарничковом покрове доминантом является черника. Ее фитомасса составляет в среднем 73 — 88% от его общей массы.

Доля травяно-кустарничкового покрова в общей массе живого напочвенного покрова увеличивается с возрастом древостоя и составляет по 11, III и ІУ классам возраста соответственно 29,3%; 37,7; 44%.

В моховом покрове, кроме доминантов мхов плеврозиума Шребера и дикранумов в западинках, отмечены более требовательные к увлажнению —

Kiinde	инес Под- Под- Итого		Живой	напочвенны	Всего		
ноя- риста	рост	COK	подрос- та и под- леска	травяно- кустар- ничковый покров	моховой покров	итого	
11	658	28	686	398	960	1358	2044
Ш	867	48	915	648	1068	1716	2631
IY	1147	45	1192	928	1177	2105	3297

политрихум обыкновенный и сфагнумы. Однако их продуктивность незначительна — 2,7%; 0; 1,8% от общей массы мохового покрова. Таким образом, при увеличении фитомассы мхов (табл. 1) от II к IУ классу возраста уменьшается долевое участие в общей массе живого напочвенного покрова за счет разрастания травяно-кустарничкового яруса.

Изменение биологической продуктивности подроста и подлеска (A) и доминантов нижних ярусов растительности ели (Б) и черники (В) выражается следующими уравнениями: (A) $\Pi=28,93+25,93A-0,14A^2$; (Б) $\Pi=77,31+18,91A-0,09A^2$; (В) $\Pi=684,23-20,15A+0,31$ A^2 , где $\Pi-$ продуктивность, кг/га; A- возраст, лет.

Закономерности изменения нижних ярусов растительности подтверждены результатами дисперсионных анализов. Влияние возраста древостоя оказалось достоверным с вероятностью более 95% [8].

Из вышеизложенного можно заключить, что фитомасса нижних ярусов растительности — показатель очень динамичный и находится в тесной связи с возрастом древостоя.

На верховых болотах произрастают чистые сосновые насаждения. Подрост представлен лишь сосной (табл. 2). По характеру водного питания выделенные участки относятся к среднеобводненным, застойным, где высота леса может достигать 5-7 м.

В живом напочвенном покрове преобладают сфагновые мхи (78 — 84% от общей массы покрова). В травяном покрове долевое участие багульника — до 60%, пушицы влагалищной — 22—48%, клюквы — 16-31%, голубики — до 21%. Средние значения по типам болот приведены в табл. 3.

Переходные болота отличаются от верховых большей прочностью. Пробные площади в этом типе болот заложены в сосняках осоково-багульниковосфагновых, по характеру водного режима относящихся к слабообводненным [4]. Подрост составляют сосна и береза. Подлесок отсутствует. В живом напочвенном покрове преобладают сфагновые мхи, однако их фитомасса меньше, чем на верховых болотах, и составляет 70 — 74% от общей массы покрова. Долевое участие травяного покрова соответственно увеличилось.

Низинные болота характеризуются самой высокой проточностью и обводненностью в весеннее время [4]. Пробные площади заложены на участках слабообводненных и среднепроточных. На них преобладают чернично-багульниково-сфагновые ассоциации. В этих условиях отмечены минимальная фитомасса сфагнума (48 — 53% от общей массы покрова), подроста сосны и

40 сосны основного яруса (высотой

(в кг/га абс. сухого вещества)	Подлесок Всего Сосна Всего	итого крушина малина итого подроста основного подлеска яруса	5 146 151 431 -	1 254 255 459	242 3 200 203 445 — 4+5 76 — — 76 600 676	90 410	83 505	225 2705	3076	214 3650	
щества)			151	255	203	1	1	I	ł I	1	
сухого ве	жора	малина	146	254	200	1	1	1	1 1	1 1	
r/ra a6c.	Подл	крушина	22	-	ლ	1	ı	1	1		
(B K			280	204	242	06	83	225	153	214	
	Подрост	береза	280	204	242	80	67	ı	L	1 /	
		сосна		1 1	22	0,	16	225	153	189	
		ОПОПНОТВ	0.71	89'0	0,70	0 69	0,70	0,70	0,70	0,70	
		болота	- Harman	-"-	Среднее Переход-	HOE TO WE	Среднее	Верховое	1	Среднее	00000
		No. n. n.	000	80	149	4 2 2	2 1	110	114	1.3	

сосняках по болоту 8 Биологическая продуктивность живого напочвенного

Вид растений или группа	Низинн	Низинное болото	Переходное болото	болото	Верховое болото	norm
видов	встречаемость,	продуктив-	встречаемость,	продуктив-	встречаемость,	продуктивность,
Багульник болотный	75	455	09	263	SS.	23E
Голубика	15	182	70	364	0,00	CC 7
Клюква четырехлепестная	1	ŀ	75	32	2 08	172
Подбел многолистный	2		. !	. 1	}	7/1
Осоки	50	94	20	30		ı
Пушица	1	1	40	111	I 06	
Черника	50	200	1	ı	}	200
Итого травяного покрова	1	932	ı	800		1 7
Плеврозиум Шребера	15	148	. 1	} †		/40
Сфагнум	100	1126	100	2119	001	0300
Итого мохового покрова	1	1274	1	2119	2 1	3258
В с е г о живого напочвенного	I 0	2206	1	2919	1	4004

максимальная фитомасса подроста березы, подлеска (из крушины и малины) и травяно-кустарничкового покрова. В живом напочвенном покрове отмечены осоки, мох Шребера, которые являются в какой-то мере индикаторами при выделении низинных болот. Сосна в подросте на пробных площадях не отмечена. Это объясняется тем, что в результате болотообразовательного процесса уменьшилась проточность и увеличилась обводненность данных участков, в конечном итоге затруднивших возобновление сосны.

Из вышеизложенного следует, что с увеличением проточности увеличивается фитомасса травяно-кустарничкового покрова, фитомасса мхов из сфагнума уменьшается. Формируется более разнообразный видовой состав подроста и подлеска. С увеличением обводненности наблюдаются обратные процессы.

Исследования по определению влияния полноты на продуктивность нижних ярусов растительности проводились в условиях верхового болота на смежных пробных площадях с полнотой 0,7; 0,6; 0,54 (табл. 2). На данных объектах определена фитомасса надземных частей растений под пологом древостоя и показатели микроклимата при полноте 0,7 и 0,54.

Сосняки сфагновые различной полноты характеризуются разными показателями микроклимата под их пологом, формирующимися под влиянием основного яруса древостоя в условиях избыточного увлажнения. Так, приход солнечной радиации на участке с полнотой 0,7 составил 79% от среднесуточной освещенности при полноте 0,54. Первую половину дня количество радиации увеличивается и, достигнув максимума, в полдень уменьшается. Амплитуда температуры воздуха на поверхности почвы в течение суток составляет при полноте 0,54 — 14,2°; при полноте 0,7 — 12,7°; на высоте 1,3 м — соответственно 10,1 и 9,5°. Однако в низкополнотном насаждении среднесуточная температура на поверхности почвы оказалась выше лишь на 0,1°, тогда как на высоте 1,3 м — на 1,7°. Это объясняется влиянием кустарничкового яруса и влажного мохового покрова из сфагнума на прогреваемость припочвенного слоя воздуха.

Крайние значения влажности отмечены, наоборот, в насаждении полнотой 0,7. Направление суточного хода ее обратно направлению суточного хода температур (в полуденные часы относительная влажность минимальна). При низкой полноте (0,54) среднесуточная влажность меньше на 11%.

Температура поверхностных слоев почвы более высокая в насаждении полнотой 0,54, однако она оказалась значительно ниже температуры почвы на открытом месте. Диапазон среднесуточных температур на глубине 10 и 50 см составил при полноте 0,7 - 4,6 $^{\rm O}$; при полноте 0,54 - 2,0 $^{\rm O}$, что указывает на слабую прогреваемость почвы и воды на больших глубинах в результате меньшего доступа солнечной радиации под полог насаждений более высокой полноты.

Как видно, под пологом сосняков сфагновых различной пространственно-таксационной структуры формируется своеобразный микроклимат, в зависимости от которого наблюдаются различия в характере накопления органического вещества нижними ярусами растительности. Так, основную массу живого напочвенного покрова на всех участках составляет моховой покров из сфагнума (78 — 85%), с уменьшением полноты его фитомасса увеличивается (табл. 4).

Вид растений или	Полн	ота 0,7	Полнота	0,6	Полнота 0,54		
группа видов	продуктив- ность, кг/га	встречае-		встреча- емость,	продуктив- ность, кг/га	встреча- емость, %	
Багульник	470	70	20.0	_	140	40	
Голубика	20	10	-	_	330	40	
Клюква	123	60	200	100	193	90	
Пушица	172	60	430	100	165	100	
Черника	-	-	6	10	_	_	
Итого травяно-							
го покрова	785	-	636	_	828	_	
Сфагнум	2813	100	3611	100	4550	100	
Итого мохо-							
вого покрова	2813	_	3611	_	4550	_	
Итого травяно-							
мохового покрова	3598	_	4247	_	5378	_	

В травяном покрове, состоящем из багульника, голубики, черники, пушицы и клюквы, при полноте 0,7 доминирует багульник (60%), при полноте 0,54 — голубика (40%). Пушица является доминантом в насаждении полнотой 0,6 и субдоминантом на двух других объектах (20 — 22% от фитомассы травяного покрова).

Сравнение фитомассы живого напочвенного покрова обнаруживает четкую зависимость — увеличение его фитомассы с уменьшением полноты древостоя. Так, при изменении полноты на Q.16 фитомасса покрова изменилась на 1780 кг/га, что в переводе на Q,1 полноты составило 1112 кг/га.

Долевое участие травяного покрова в общей массе живого напочвенного покрова уменьшается с уменьшением полноты (22 — 15%).

Необходимо подчеркнуть, что на участке с полнотой 0,7 число деревьев превышает более чем в 2,5 раза число деревьев на более обводненном участке при полноте 0,54. Это согласуется с исследованиями Л.П.Смоляка, где он указывает, что "густота деревьев зависит от обводненности того или иного участка болота" [4]. При большей обводненности создаются более благоприятные условия для влаголюбивых сфагнумов, в то же время ухудшаются условия для развития травяного покрова, ограничивается его видовой состав, о чем свидетельствуют данные, приведенные выше.

В заключение следует сказать, что в сосняках, отличающихся возрастом, характером увлажнения и проточности, наблюдаются значительные различия биологической продуктивности нижних ярусов растительности. Это необходимо учитывать при организации побочных пользований лесом и при оценке кормов в охотничьих угодьях.

ЛИТЕРАТУРА

1. Ю р к е в и ч И.Д., Я р о ш е в и ч Э.П. Биологическая продуктивность типов и ассоциаций сосновых лесов. — Минск: Наука и техника, 1974. — 295 с. 2. Б о й к о А.В., С и д о р о в и ч Е.А., М о и с е е в а А.Б. Экспериментальные исследования природных комплексов Березинского заповедника. — Минск: Наука и техника, 1975. — 374 с. 3. Экспериментальные исследования ландшафтов Припятского заповедника/ А.В. Б о й к о, Н.В. С м о л ь с к и й, Е.А. С и д о р о в и ч и др. — Минск: Наука и техника, 1976. — 304 с. 4. С м о л я к Л.П. Болотные леса и их мелиорация. — Минск: Наука и техника, 1969. — 210 с. 5. М о л ч а н о в А.А., С м и р н о в В.В. Методика изучения прироста древесных растений. — М.: Наука, 1967. — 95 с. 6. Р о д и н Л.Е., Р е м е з о в Н.П., Б а з и л е в и ч Н.И. Методические указания к изучению динамики и биологического круговорота в фитоценозах. — Л.: Наука, 1968, с. 8 — 25. 7. Справочник таксатора. — Минск: Ураджай, 1980. — 360 с. 8. П л о х и н с к и й Н.А. Биометрия. — М.: Изд-во МГУ, 1970, с. 368.

УДК 630^X 160.21

И.В. ГУНЯЖЕНКО, канд. с.-х. наук, Л.С. ПАШКЕВИЧ (БТИ)

БИОХИМИЧЕСКИЙ СОСТАВ ДРЕВЕСНОЙ ЗЕЛЕНИ И ХВОЙНО—ВИТАМИННОЙ МУКИ

Древесная зелень является сырьем для получения ряда продуктов, обладающих высокими кормовыми и лечебными свойствами. По содержанию ценных в кормовом отношении веществ листовая масса древесных растений, по данным В.Д.Первухина [1], не уступает травам.

Из всех продуктов, изготовляемых из древесной зелени, наибольший объем принадлежит хвойно-витаминной муке, получаемой в результате быстрого искусственного высушивания измельченных частей древесной зелени. Только за годы 10-й пятилетки лесхозами БССР изготовлено около 200 тыс. т хвойно-витаминной муки.

Вместе с тем многое в технологии изготовления хвойно-витаминной муки изучено недостаточно, в частности вопрос изменения содержания важнейших в кормовом отношении веществ в древесной зелени и хвойно-витаминной муке. Изучение данного вопроса позволит установить степень снижения кормовой ценности изготовляемой муки, что в свою очередь даст возможность предварительно определять и планировать качество продукции.

С этой целью нами на базе цеха Осиповичского лесхоза было определено содержание пигментов, аскорбиновой кислоты и сахаров в древесной зелени ели непосредственно перед загрузкой ее в установку ABM-0,65 и в хвойновитаминной муке сразу же после изготовления.

Содержание исследуемых веществ определялось по общепринятым в биохимии растений методикам. Пигменты из материала извлекались с помощью ацетона по методу Т.Н.Годнева [2], а их концентрация в вытяжке устанавливалась на спектрофотометре СФ-4А с последующим вычислением содержания хлорофилла а и б и каротиноидов по формулам Веттштейна. Аскорбиновая кислота определялась методом индофенольного титрования,