О. К. Леонович, канд. техн. наук

БИООГНЕЗАЩИТА ДРЕВЕСИНЫ СОСТАВАМИ НА ОСНОВЕ БИШОФИТА С ОБРАЗОВАНИЕМ ТРУДНОРАСТВОРИМЫХ КОМПЛЕКСОВ

A new structure which helps to protect wood from fire end bio-destruction is developed. This structure consist of H_3PO_4 , $(NH_2)_2CO$, $MgCl_2$, $(NH_4)_2SiF_6$ and H_2O (PSO-6M) Quantitative parties of components are determined. The wood which is soaked with the structure of (PSO-6M), which consists of 80 kg/m3 dry hard combustible saturating substance, which include difficultly soluble complex of MgNH_4PO_4 and $\{-N(CONH_2)CH_2-\}$ 3n polymer. This kind of wood is really hard combustible and doesn't lose its fire resistance even at intensive washing away. In the developed structure reaction of formation $\{-N(CONH_2)CH_2-\}$ 3n polymer occurs in the sour environment at very low temperatures and the vole of the catalyst carries out a mix of MgCl₂ $_{6}H_2O$ and H_3PO_4 , which formed at their interaction. Wood impregnated by structure PSO-6M considerable increases strength at a static bend in comparison with natural wood that is the extremely important at its application in construction.

Введение Пропитка древесных материалов с целью их биоогнезащиты может быть использована в деревообрабатывающей промышленности, домостороении, судостроении и судоремонте. Одной из важнейших задач при пропитке древесины биоогнезащитными составами является придание им высоких биоогнезащитных свойств, повышение их прочности и экологической безопасности.

В работе проанализирован состав, по технической сущности близкий к разработанному, содержащий, мас. %: ортофосфорную кислоту – 4,0– 17,0; кремнефтористый аммоний – 0,4–0,8; хлористый магний шестиводный – 7,5–30,0; гексаметилентетрамин – 4,0–16,0; вода – остальное [1, 2].

Недостатком данного состава являются невысокие показатели огнестойкости, выделение свободного формальдегида в процессе термообработки.

Известны работы по созданию препаратов, содержащих бишофит, водный раствор аммиака, 36%-ный формалин, диаммонийфосфат, аммоний кремнефтористый и воду [3]. Анализ разработанных биоогнезащитных составов показал, что необходимы дальнейшие разработки составов, трудно вымываемых из древесины, придающих ей высокие экологические (снижение выбросов формальдегида), физикомеханические и биоогнезащитные свойства.

Исследованию новой системы с целью придания древесине повышенных огнебиозащитных свойств, снижению вымываемости пропиточного состава, уменьшению выделения формальдегида и увеличению механической прочности древесины посвящена данная статья.

Основная часть В работе поставленная цель достигается тем, что известный состав, включающий ортофосфорную кислоту, кремнефтористый аммоний, хлористый магний, гексаметилентетрамин и воду, дополнительно содержит мочевину при следующем соотношении компонентов, мас. %:

ортофосфорная кислота – 3,0-6,0;

гексаметилентетрамин – 2,0–6,0; магний хлористый шестиводный – 4,0–9,0; аммоний кремнефтористый – 0,4–0,6; мочевина – 4,0–10,0; вода – 68,4–86,6.

Отличительной особенностью разработанного состава (ПСО-4М) в сравнении с известным является присутствие мочевины, которая связывает формальдегид, выделяющийся при разложении гексаметилентетрамина с образованием полимера.

Образование полимера из мочевины и гексаметилентетрамина в древесине в присутствии других компонентов предложенного состава трудно выразить одним уравнением реакции. На первой стадии процесса образуются олигомерные продукты конденсации в соответствии со следующим суммарным уравнением.

$$4MgCl_{2} + 4H_{3}PO_{4} + 18(NH_{2})_{2}CO + 3N_{4}(CH_{2})_{6}$$

$$\rightarrow 4MgNH_{4}PO_{4} + 6$$

$$NH_{2}CO-N$$

$$N-CONH_{2}$$

В процессе реакции (1) образуется в порах древесины труднорастворимый антипирен магнийаммонийфосфат и олигомер А, который может при нагревании реагировать с образованием линейных и сшитых полимеров за счет реакции с гидроксильными группами целлюлозы и лигнина древесины.

Из олигомера А в процессе термообработки могут образовываться линейные полимеры

а также разветвленные и сшитые полимеры (за счет реакции группы олигомеров).

Образовавшиеся полимеры и сополимеры

затрудняют вымывание антипирена. Одновременно уменьшается загрязнение формальдегидом, образующимся при термообработке древесины, окружающей среды.

Для приготовления разрабатываемого пропитывающего состава компоненты смешиваются в следующей последовательности: ортофосфорная кислота, вода, гексаметилентетрамин, аммоний кремнефтористый, мочевина и, наконец, магний хлористый шестиводный. Каждый компонент добавляется после полного растворения предыдущего.

Поясним отраженные в табл. 1 примеры:

Пример 1. Образцы древесины сосны размером 30×60×150 мм пропитывали составом, содержащим, мас. %: ортофосфорную кислоту -4,5; гексаметилентетрамин – 4,0; магний хлористый шестиводный – 6,5; мочевину – 7,0; аммоний кремнефтористый – 0,5; воду –77,5.

Пропитку проводили по следующему режиму. Образцы вакуумировали в течение 0,3 ч при глубине вакуума 0,085–0,095 МПа. После этого автоклав заполняли пропиточным раствором хлористого магния и образцы древесины выдерживали под давлением 0,8–1,0 МПа в течение 0,5 ч. Термообрабоотку пропитанной древесины проводили в термокамере при температуре: 80°С – 1 ч, 90°С – 1 ч, 110°С – 1 ч, 120°С – 2 ч и выдерживали под давлением 0,8–1,0 МПа в течение 0,5 ч.

Часть пропитанных образцов промывали проточной водой в течение 30 сут по ГОСТ 16713–71 с целью изучения вымываемости антипирена из древесины. Определение огнезащитных свойств антипирированной древесины проводили по ГОСТ 16363–98. Предел прочности при статическом изгибе определяли по ГОСТ 16483.3–84. Результаты исследований представлены в табл. 1.

Примеры 2, 3, 4, 5. Пропитку, термообработку и испытания образцов проводили аналогично примеру 1. Полученные результаты представлены в табл.1. Из данных табл. 1 видно, что:

1) пр едлагаемый со став можно вводить в древесину из растворов различной концентрации, меняя степень пропитки;

2) вымываемость предлагаемого состава ниже, чем состава, содержащего, мас. %: ортофосфорную кислоту –4,0–17,0; кремнефтористый аммоний – 0,4–0,8; хлористый магний шестиводный – 7,5–30,0; гексаметилентетрамин – 4,0–16,0; вода – остальное [2], и составляет 2–3% за 30 сут, у состава [2] – 7,4%;

3) древесина, пропитанная разработанным составом в сравнении с составом [2] при одном и том же содержании антипирена – 80 кг/м³, имеет на 32% выше огнестойкость. При испытаниях на огнестойкость потеря массы у образцов пропитанных разрабатываемым составом, – 5,0%, у прототипа – 7,4%;

4) пример 1 является запредельным, так как дальнейшее увеличение концентрации компонентов ограничивается их растворимостью и огнестойкость при этом возрастает незначительно;

5) пример 5 является также запредельным, так как ввести в древесину сосны пропиточного состава больше 600 кг/м³ трудно и экономически невыгодно. Раствор в примере 5 сильно разбавлен, здесь удается в процессе пропитки ввести только 42 кг/м³ сухого антипирена.

Предел прочности при статическом изгибе по ГОСТ 16483.3–84 древесины сосны, пропитанной разработанным составом, равен 137 МПа, а состава без мочевины [3] – 121 МПа при содержании сухого антипирена 80 кг/м³, т. е. возрастает на 13,2%.

Для исследования стабильности и жизнеспособности разработанных составов исследованы pH приготовленного раствора, который зависит от процентного состава компонентов и изменяется в пределах 3,40–3,90. Значения pH раствора при различном процентном содержании компонентов приведены в табл.2.

Таблица 1

Состав, мас. %: ортофос- форная кислота (1) гекса- метилентетрамин (2), би- шофит (3), аммоний крем- нефтористый (4), мочеви- на (5), вода (6)				рос- кса- би- рем- еви-	Содержание в древесине, кг/м ³		Содержание сухого ве- щества по-	Биостойкость пропи- танной дре-	Потеря массы при сжигании, %		Предел прочности при стати-	
1	2	3	4	5	6	пропи- точно- го рас- твора	сухо го ве- щества	сле вымы- вания, кг/м ³	весины, %	до вымы- вания	после вымы- вания	ческом из- гибе, МПа
7,2	7,2	10,8	0,6	12.0	62,2	214,3	81,0	79,0	0,31	4.9	5,1	138
6,0	6,0	9,0	0,6	10,0	68,4	250,0	79,0	77.3	0,33	5,0	5,5	136
4,5	4,0	6,5	0,5	7,0	77,5	356,0	80,0	77,5	0,53	4,9	5,6	137
3,0	2,0	4,0	0,4	4,0	86,6	582,0	78,0	76,0	0,76	5,2	5,9	137
1,5	1,0	2,0	0,5	2,0	93,0	602,0	42,1	41,3	0,60	*.)	8,3	128

Свойства древесины сосны, пропитанной составом ПСО-6м

8,0	8,0	15,0	0,4	_	84,1	256,0	81,0	75,0	0,80	7,4	7,7	121
7,2	7,2	10,8	0,6	12.0	62,2	214,3	81,0	79,0	0,31	4.9	5,1	138

Таблица 2

Значение ј	bH [раствора	в зависимости	от п	роцентного	состава	компонентов
------------	------	----------	---------------	------	------------	---------	-------------

	Состав, %							
паименование компонентов	Ι	II	III	IV				
Кислота ортофосфорная	3,0	4,5	6,0	7,2				
Гексаметилентетрамин	2,0	4,0	6,0	7,2				
Магний хлористый шестиводный	4,0	6,5	9,0	10,8				
Аммоний кремнефтористый	0,4	0,5	0,6	0,6				
Мочевина	4,0	7,0	10,0	12,0				
Вода	86,6	77,5	68,4	62,2				
Значение рН раствора	3,4	3,53	3,9	4,1				
Жизнеспособность раствора, ч	25	18	15	7				

В пределах приведенных в таблице концентраций образования аммонийных солей и значений pH реакция [1] протекает при температуре 20–25°С медленно, раствор остается стабильным в течение 15–24 ч, что вполне достаточно для проведения пропитки. При более длительном времени хранения в растворе постепенно образуется осадок магнийаммонийфосфата, и раствор становится непригодным для пропитки древесины. В процессе хранения растворов I, II, III, IV (табл. 2) выпадает осадок магнийаммонийфосфата и pH возрастает до 5,0.

Несмотря на то, что пример 1 в табл. 1 дает наиболее высокие показатели по огнестойкости и пределу прочности при статическом изгибе, этот пример необходимо считать запредельным из-за низкой жизнеспособности данного раствора (табл. 2, IV). Экспериментальные данные показывают, что увеличение концентрации мочевины действительно приводит к уменьшению растворимости компонентов раствора, или, точнее, к ускорению образования магнийаммонийфосфата в растворе. Для того чтобы раствор был стабильным в течение не менее 15–20 ч, содержание мочевины в растворе не должно превышать 7–10%.

Заключение 1. Бишофит может быть использован для получения в древесине трудновымываемого антипирена – магнийаммонийфосфата при использовании его совместно с фосфатосодержащими и аммонийсодержащими компонентами.

2. Установлены количественные соотношения компонентов, при которых обеспечивается высокая жизнеспособность составов, низкая вымываемость компонентов и высокая огнестойкость антипирированной древесины.

3. Введение в состав на основе бишофита гексаметилентетрамина и ортофосфорной кислоты мочевины приводит к связыванию образующегося в процессе термообработки древесины формальдегида и, таким образом, снижению загрязнения окружающей среды, увеличению огнестойкости древесины.

4.В разработанном составе реакция образования мочевино-формальдегидного полимера происходит в кислой среде при значительно низких температурах, причем роль катализатора выполняет смесь бишофита и ортофосфорной кислоты, образующаяся пр и их взаимодействии

5. Выделение необходимого для образования полимера формальдегида из гексаметилентетрамина происходит только в присутствии компонентов предлагаемого состава.

6. Образующиеся в процессе термообработки древесины, пропитанной предлагаемым составом ПСО-6М магнийаммонийфосфат, более стабильно удерживаются в связи с образованием мочевиноформальдегидного полимера.

7. Пропитанная составом ПСО-6М древесина, содержащая 80 кг/м³ сухого антипирирующего пропиточного вещества, включающего трудно растворимый комплекс магнийаммоний фосфат и мочевиноформальдегидный полимер является трудногорючей и не теряет огнестойкости даже при интенсивном вымывании.

8. Древесина, пропитанная составом ПСО-6М значительно увеличивает предел прочности при статическом изгибе в сравнении с натуральной древесиной, что является крайне важным при применении ее в строительстве.

Литература

1. Леонович, О. К. Технология производства модифицированной древесины для опор линий связи и электропередачи: дис. ... канд. техн. наук: 05.21.05 / О. К. Леонович. – Минск, 1988. – 345 л.

2. Огнебиозащитный состав для пропитки древесины: а. с. 1220248 СССР, МКИ³ В27К 3/50 / Г. М. Шутов [и др.]. / Белорус. гос. технол. ун-т. – № 3686387/29-15; заявл. 04.01.84; опубл. 22. 11.85 // Открытия. Изобрет. – 1985. –

 $\underline{N}\underline{\circ}~6~.-C.~235.$

3. Леонович, О. К. Исследование антипирирования древесины растворами на основе хлористого магния (бишофита) / О. К. Леонович // Труды БГТУ. Сер. П, Лесная и деревообраб. пром-сть. – 2007. – Вып. XV. – С. 205–208.