MR 66.048

А.И.Ершов, М.Ф.Шнайдарман, С.К.Протасов ИССЛЕДОВАНИЕ РАБОТЫ СКОРОСТНОЙ ТАРЕЛКИ С ПРЯМОТОЧНО-ЦЕНТРОБЕЖНЫМИ КОНТАКТНЫМИ ЭЛЕМЕНТАМИ

Иопользование массообменных таредок с взаимодействием фы: в закрученном прямотока внутри контактных элементов прот возможность значительно увеличить производительность пуществующих абсорбционных и ректификационных аппаратов [1]. В настоящее время проведены исследования разнообразимих конструкций подобного принципа действия, однако режиультеты не воегда можно сопоставить между собой, поскольму гидродинамические параметры не выражены через единые притерии, а привязаны к конкретным конструктивным размерам устройств.

В данной работе в качестве независимого поременного, тариктеризующего степень закрутки потока, принята величина безразмерного момента количества движения в тангенциальном направлении [2]

 $M = 2 \int |\bar{u}| \, \bar{w} \, \bar{z}^2 d\bar{z} . \tag{I}$

Учитывая карактер распределения тангенциальной скорости в закрученном потоке, и на основе проведенных экспериментальных исследований поля скоростей для конкретных закручивателей, получена следующая зависимость для величины
безразмерной тангенциальной скорости

$$\widetilde{W} = 2/\widetilde{\tau} \exp(-1/2M\widetilde{\tau}), \qquad (2)$$

где U , W , U_{CP} — осевея, тенгенциальная и среднерасходная скорости; z , R — текущий радиус и радиус трубн; ρ — плотность газа; $\bar{z} = \mathcal{V}/R$; $\bar{U} = U/U_{CP}$; $\bar{W} = W/U_{CP}$

Эффективность работы тарелок элеме оного типе с решеркуляцией жидкой фазы и общим переливом на ступени во многом зависит от раскода жидкости через контактные элементы. Существенное влияние на эту величину оказывает гиправлическое сопротивление контактного элемента и место ввода жидкости.

ічми исоледовано гидравлическое сопротивление вкода и окорридата тнеиниффесы, конфициент гидравическо го сопротывления входа в значительной степени зависит от опособа закрутки потока и качестве изготовления закручини теля. Зевысимость коэффициенте гидревлического сопротивля ния выхода от М являетоя в определенной мере универсальной. Подучени следующие выражения

$$f_{bbx}^2 = exp(M^2)$$
 для $0 < M < 0.9$; (3) $f_{bbx}^2 = 0.54 exp(1.6M)$ для $0.9 < M < 1.2$ (4)

$$f_{BMZ} = 0.54 \exp(1.6M)$$
 das $0.9 < M < 1.2$ (4)

В случае подводе жидкой фазы по радиальным трубкам выше закручинателя проанелизировано влияние места ввода жидкости по радиусу и степени закрутки потока на ее расход.

используя выражение для редвельной составляющей скороота полученное из уравнения Навье-Стокса, и пренебретая малым. ведичинеми, имвем

 $\frac{\partial p}{\partial y} = p \frac{w^2}{r}.$

Подставляя (2) в (5) и выражая величину статического давления через коэффициент гидревлического сопротивления

$$f_{\partial \mathcal{M}} = \frac{2(P - P_{CP})}{\rho U_{CP}^2}, \qquad (6)$$

подучию

$$\begin{cases}
\frac{2}{300} = 4e^{\frac{M_{\tilde{z}}}{R_{\tilde{z}}}} \left(M^{2} + \frac{M}{\tilde{z}}\right) - 8M \int e^{\frac{M_{\tilde{z}}}{R_{\tilde{z}}}} \left(M\tilde{z} + 1\right) d\tilde{z}, \quad (7)
\end{cases}$$

$$P_{cp} = \frac{2}{R^{2}} \int Pz \, dz$$

Интеграл в правой части уравнения (7) не берется в квалратурах. С помощью ЭВМ было получено численное решение. Результать представлены в таблице 1.

Используя денные теблицы I, можно моделировать различный карактер изменения нагрузок по фазам с изменением места ввода жидкости и степени закрутки потока.

Экспериментальчо исследовался также унос капель из тактного элемента в зависимости от степени закрутки потоко М и месте весле нилиссти при резимании нагрузках по фезам. Завасинодть тепрован увера от степечи закрутки потока

С изменением места ввода жидко до радиуся от отенки к центру величина уноса в окрестности стенки до 7.2 изменяется незначительно, а затем от 0.2 до 0.6 т молодается резкое увеличение брызгоуноса.

Табдица I Коаффицианты гидравдического сопротивления (радо в зависимости от стапани закрутки потока и места ввода жидкости

nn I	M	0,2	0,4	0,6	0,8	T.
I	0,50	-0,42	-0,34	···O,II	0,15	· (II),389
2	0,55	-0,60	-D, 46	-0,13	0,21	NO.5I
3	0,60	-0,82	-0,59	-0, I5	0,28	0,63
14	0,65	-I,07	-0,74	-0, I6	0,36	0,76
5	0.70	₩I,37		O, I7	0,44	0,90
6	0.75	-I,70	.I. 04	-0, I7	0,53	I,03
7	0,80	-2,06	-I,20	~0, I6	0,62	1,17
8	0,85	~2,45	-I,36	-0, I5	0,72	1,32
-9	. 0,90	-2,88	-I,52	-0, I4	0,82	1,46
IO	0,95	-3,33	I,68	-0, I2	0,92	1,61
II	I,00	-3,80	-I,83	~0, IO	I,03	I,75

Литература

I. Ершов А.И. Разработка, исследование и примонение элементных ступеней контакта с взаимоде ствием фаз в закручен+ ном прямотоке. Автореф.докт.дис. Ленинград, 1975.

2. Аэродинамика закрученной струм. Под ред. Акметова Р.З. М.. Энергия. 240 стр.