ках ухода за лесом" (разработаны ВНИИЛМ в 1972 г.) и "Системой машин для комплексной механизации лесохозяйственного производства на 1981—1990 гг." Часть 1У. "Лесное хозяйство и защитное лесоразведение" предусмотрено применение как широкопасечной и среднепасечной, так и узкопасечной технологий.

В проекте системы машин для рубок ухода за лесом с заготовкой

древесины предусмотрено три технологических процесса:

рубки ухода с заготовкой деревьев и хлыстов;

рубки ухода с заготовкой сортиментов; рубки ухода с заготовкой зеленой щепы.

Для обеспечения выполнения этих технологических процессов соответственно разработаны технологические комплексы, которые включают 13 машин для рубок ухода с заготовкой древесины.

Изготавливаются серийно самопогружающая машина "Зайчик" и трелевочное оборудование к тракторам с гидрозахватом "Муравей"

и двухбарабанной лебедкой ЛТП-2.

В настоящее время созданы образцы и проводятся испытания следующих машин для рубок ухода с заготовкой древесины: рубщик-пакетировщик для срезания ряда деревьев с формированием пачки, тракторный подтрелевщик ПДТ-0,3 для подтрелевки и формирования пачки, электрифицированный агрегат "Элха" для срезания деревьев и подтаскивания пачек, машина для бесчокерной трелевки леса и др.

Необходимо в ближайшее время создать образцы новых машин: валочно-пакетирующей машины для прореживания, валочно-пакетирующей машины для проходных и санитарных рубок, трелевочной машины для подтаскивания деревьев и формирования пачек и др.

УДК 630*65.011.54

В.С. Романов, А.П. Матвейко, Л.Ф. Поплавская (Белорусский технологический институт им. С.М. Кирова)

ТЕХНОЛОГИЯ И МЕХАНИЗАЦИЯ РУБОК УХОДА С ПОЛУЧЕНИЕМ ТЕХНОЛОГИЧЕСКОГО СЫРЬЯ В УСЛОВИЯХ ИНТЕНСИВНОГО ВЕДЕНИЯ ЛЕСНОГО ХОЗЯЙСТВА

Для увеличения объема выпуска продукции и более полного использования лесосырьевых ресурсов в европейской части страны необходимо создавать более совершенные технологические процессы и системы машин, позволяющие вовлекать в производство все виды древесного сырья. Это тем более важно, что потребности в древесине из года в год растут и удовлетворить их за счет увеличения объемов лесозаготовок не представляется возможным. Поэтому уже сейчас в отдельных эконо-

мических районах страны и ряде зарубежных стран испытывается недостаток в древесном сырье. Чтобы его восполнить, необходимо вовлечь в производство дополнительные источники древесного сырья. Одним из существенных дополнительных источников древесного сырья для промышленности может быть древесина от рубок ухода. В условиях интенсивного ведения лесного хозяйства количество древесины, получаемой при проведении рубок ухода, составляет около 40 % в общем объеме лесозаготовок. Анализ проблемы рационального и полного использования всей биомассы деревьев, вырубаемых при рубках ухода, показал, что при существующих способах и средствах механизации заготовки и первичной переработки маломерной древесины значительное ее количество не используется.

Для решения вопросов технологии и механизации рубок ухода с использованием всей биомассы вырубаемых деревьев необходимо знать размерно-качественную характеристику вырубаемых деревьев, объемы и структуру древесного сырья, а также нормативы выхода технологического сырья в зависимости от вида рубок ухода и породы. Определение лесоводственно-таксационных показателей деревьев, вырубаемых при рубках ухода, производилось по материалам лесосечного фонда, отводимого под рубки ухода, и данным экспериментальных исследований. Размерные и биометрические показатели определялись для пяти наиболее распространенных лесообразующих пород: сосны, ели, березы, осины, ольхи черной. При этом определение фитомассы сосны, вырубаемой при рубках ухода, производилось с использованием таблиц, составленных для Белорусской ССР В.М. Ефименко. Фитомасса ели определялась по данным А.М. Кожевникова и В.Ф. Решетникова.

Определение фитомассы березы, вырубаемой на прочистках, прореживаниях и проходных рубках, производилось с использованием уравнений связи, полученных У.И. Галванс и М.Я. Зуковска. Фитомасса ольхи, осины и березы на осветлениях определялась экспериментально, весовым методом. В камеральных условиях рассчитывались уравнения связи между таксационными и биометрическими показателями вырубаемых деревьев при проведении рубок ухода, требованиями к древесному сырью для народного хозяйства и поставленной целью, разрабатывались перспективные технологические схемы рубок ухода для условий БССР на основе комплексной механизации. При этом предусматривалось использование как существующих, так и планируемых к выпуску лесозаготовительных машин и оборудования в нашей стране, а также отдельных зарубежных машин.

Оценка разработанных технологических схем рубок ухода проводилась по технико-экономическим показателям, которые рассчитывались в соответствии с методическими положениями по расчету экономической эффективности, разработанными ЦНИИМЭ. Описание технологи-

ческих процессов проводилось согласно схеме, предложенной М.О. Даугавиетисом.

В результате обработки полученных данных определены породный состав вырубаемых деревьев и распределение их по диаметрам по каждому виду рубок ухода. Анализ показывает, что размерные и качественные показатели вырубаемых деревьев в значительной мере зависят от вида рубок ухода. Так, при проведении осветлений и прочисток вырубаются деревья преимущественно мягколиственных пород. Эти деревья тонкомерные (диаметр на высоте груди составляет 2,1 . . . 8 см) и не могут быть использованы для выпуска пиломатериалов. При прореживаниях вырубаются как хвойные (43,2 %), так и лиственные породы. Около 40 % вырубаемых деревьев имеют диаметр на высоте груди 10 см и выше. При проходных рубках также значительную долю (38.9%) занимают хвойные деревья. При этом более 65 % сосновых деревьев и около 80 % лиственных деревьев имеют диаметр 10 см и выше. Таким образом, значительная часть древесного сырья, вырубаемого при прореживаниях и проходных рубках, по своим размерам может быть использована для переработки на пиломатериалы.

В результате обработки данных измерений биометрических и таксационных показателей установлено, что связь между диаметром ствола и весом отдельных частей дерева, а также между отдельными элементами кроны и ствола является прямолинейной и выражается уравнением вида

$$y = ax + b$$
.

На основании полученных зависимостей, а также материалов лесоустройства по рубкам ухода, в частности вырубаемого запаса с 1 га, по породам и видам рубок, рассчитаны запасы надземной фитомассы, получаемой с 1 га в разрезе пород и видов рубок для определения потенциальных ресурсов (таблица).

Полученные данные по размерно-качественной характеристике древесного сырья и его запасам показывают, что эффективная заготовка технологического сырья для промышленного использования при проведении рубок ухода связана со значительными трудностями, которые обусловлены низкой концентрацией сырья, широким диапазоном таксационных и биометрических показателей вырубаемых деревьев, необходимостью минимального отрицательного влияния процесса заготовки на оставляемые насаждения.

Перечисленные факторы оказывают отрицательное влияние на производительность оборудования и увеличивают затраты на получение единицы технологического сырья при проведении рубок ухода.

Для более эффективного использования техники и повышения производительности труда на рубках ухода в настоящее время многие предприятия лесного хозяйства переходят на блочно-концентрированный

Запас надземной фитомассы на 1 га по видам рубок ухода и преобладающей породе

Преобладаю- щая порода	Осветление			Прочистка		
	ствол, м ³	сучья, м ³	зеленая масса, м ³	сгвол,	сучья, м ³	зеленая масса, м ³
Сосна Ель Ольха Осина Всего	4,6 4,6 6,6 7,7 6,1	0,7 0,7 3,4 1,2 1,4	1,0 1,0 0,6 1,5 1,2	12,0 12,0 16,5 16,3 15,0	2,4 2,5 1,9 1,7 2,2	1,6 2,1 0,8 0,6 1,2

Продолжение

Прео бладаю- щая порода	Прореживание			Проходная			
	ствол, м ³	сучья, м ³	зеленая масса, м ³	ствол, м ³	сучья, м ³	зеленая масса, м ³	
Сосна Ель Ольха Осина Всего	22,4 23,8 25,5 28,0 24,9	3,0 4,2 4,5 5,5 4,1	2,1 4,9 0,7 1,3 2,1	34,3 41,0 34,5 34,5 35,3	6,3 4,6 2,2 4,5 4,1	3,0 4,1 0,5 1,5 1,9	

метод ведения рубок ухода. Благодаря этому обеспечивается также концентрация заготавливаемого древесного сырья, что позволяет осуществлять его первичную переработку на лесосеке, а полученную продукцию доставлять непосредственно потребителям.

Анализ существующих технологических процессов рубок ухода в молодняках показал, что заготовляемая при этом продукция в основной своей массе не находит сбыта, а себестоимость заготовки довольно высока.

Разработанные в Белорусском технологическом институте им. С.М. Кирова технологические схемы проведения рубок ухода в молодняках предусматривают комплексную механизацию всего технологического процесса и полное использование вырубаемой фитомассы.

Первая технологическая схема предусматривает заготовку зеленой щепы из целых деревьев. При этом технологический процесс состоит из пяти операций: валки, складирования, трелевки деревьев, измельчения их на щепу и транспортировки щепы потребителю. Измельчение деревьев на щепу производится на верхнем складе. Для чего подтрелеванные деревья укладываются на складе перпендикулярно лесовозной дороге и комлями к дороге. Для механизации указанных выше операций рекомендуются следующие машины и механизмы: легкие бензино-

моторные пилы и колесные тракторы, оборудованные для бесчокерной тредевки, самоходные или передвижные рубительные машины с гидроманипулятором и контейнерные автощеповозы.

По второй технологической схеме предусматривается заготовка на лесосеке щепы и древесной зелени. При этом возможны два варианта отделения древесной зелени. По первому варианту отделение зелени с деревьев производится на верхнем складе передвижными установками, а по второму — отделение зелени от щепы в процессе измельчения деревьев (в щепопроводе рубительной машины) на рубительно-сепарирующей установке. Применяемые средства механизации на валке и трелевке деревьев, а также транспортировке щепы те же, что и в первой технологической схеме. Если рубки ухода в молодняках проводятся линейным способом, вместо бензиномоторных пил на валке деревьев может быть применен однорядный вальщик-пакетировщик РПР-1. Перспективной для проведения линейных рубок ухода является многооперационная машина "Скорпион".

Проведение прочисток по вышеизложенным схемам является рентабельным. Эффективность капитальных вложений колеблется в зависимости от применяемой системы машин и составляет от 0,91 р. до 2,20 р. на 1 р. затрат. Осветления же остаются убыточными из-за слишком малого объема ствола. Однако с лесоводственной точки зрения именно осветлениями формируется состав насаждений. Поэтому целесообразно увеличить интенсивность рубки при осветлениях, что приведет к увеличению сроков повторяемости рубки и в конечном итоге к вырубке более крупных деревьев при последующих видах рубок, а также к уменьшению повреждений, наносимых лесной среде частыми рубками.

Анализ существующей технологии прореживаний и проходных рубок показывает, что для их проведения требуются большие трудозатраты и привлечения ручного труда, а коэффициент: использования древесно-

го сырья низкий.

Для повышения эффективности этих рубок разработано пять технологических схем, предусматривающих полное использование вырубаемой массы.

Первая технологическая схема предусматривает заготовку деловых сортиментов и дров из стволовой части и зеленой щепы из вершин и сучьев. Технологический процесс состоит из семи операций: валки, трелевки, очистки деревьев от сучьев на верхнем складе, измельчения вершин и сучьев на щепу, раскряжевки хлыстов на сортименты, штабелевки сортиментов и транспортировки щепы потребителю.

Для выполнения указанных операций рекомендуются бензиномоторные пилы, валочно-пакетирующие машины ВПМ-35, колесные трелевочные тракторы с различным трелевочным оборудованием, погрузочнотранспортные машины, сучкорезно-раскряжевочные установки (процессоры), сучкорезные машины, манипуляторы для штабелевки, пере-

движные или самоходные рубительные машины и автощеповозы. Различное сочетание таких машин позволяет рекомендовать в рамках одной технологической схемы восемь вариантов систем машин.

Технология может быть широкопасечной при применении таких машин, как ЛКТ-81, Т-40AM с АЛП или узкопасечной, если использовать ВПМ-35, ЛТ-168, МТЗ-80 с МТТ-10. Ширина технологического коридора зависит от марки трелевочной машины и колеблется в пределах от 3 м (ЛКТ-81, Т-40AM с АЛП) до 5 м (ВПМ-35, МТЗ-80 с МТТ-10).

По второй технологической схеме предусматривается получение щепы из целых деревьев на верхнем складе. Для валки, трелевки и транспортировки щепы рекомендуются те же машины, что и в первой схеме. Измельчение деревьев на щепу целесообразно производить самоходными или передвижными рубительными машинами, оснащенными гидроманипуляторами.

Третья технологическая схема также предусматривает измельчение целых деревьев на щепу, только с предварительным отделением зелени. По сравнению со второй схемой здесь выполняются дополнительно две операции — это отделение зелени и транспортировка ее потребителю. Отделение зелени целесообразно производить на верхнем складе передвижными отделителями зелени.

По четвертой технологической схеме производится заготовка сортиментов (полухлыстов) из комлевой бессучковой части и щепы из вершинной части дерева. Технологический процесс включает шесть операций: валку, трелевку, раскряжевку на полухлысты, измельчение вершинной части дерева на щепу и штабелевку полухлыстов. Для уменьшения отрицательного влияния трелевки на оставляемую часть насаждений целесообразно раскряжевку деревьев на полухлысты производить непосредственно на лесосеке. Это позволит осуществлять трелевку сортиментов (полухлыстов) и вершин легкими колесными трелевочными тракторами, оснащенными бесчокерным трелевочным оборудованием.

Для уменьшения содержания древесной зелени в щепе измельчение вершин деревьев на щепу в летний период следует производить после их биологической сушки в течение 14 . . . 18 дней. На измельчении вершин на щепу могут быть использованы те же машины, что и в предыдущих технологических схемах.

Отличительной особенностью этой технологической схемы является исключение из технологического процесса операции очистки деревьев от сучьев.

Пятая технологическая схема отличается от четвертой тем, что она предусматривает еще и сепарацию зеленой щепы в процессе измельчения, при этом получают три вида продукции: сортименты (полухлысты), технологическую щепу и древесную зелень.

Наиболее рентабельной является вторая технологическая схема.

Эффективность капитальных вложений составляет 0,718 . . . 0,876 р. на 1 р. затрат в зависимости от системы машин. Однако, учитывая потребности народного хозяйства в деловой древесине, а также в древесной зелени, нецелесообразно ориентироваться на получение щепы из целых деревьев на этих видах рубок ухода.

Наиболее перспективной следует считать технологическую схему, предусматривающую заготовку сортиментов из комлевой части, щепы и древесной зелени из вершинной. Применение этой схемы позволяет значительно снизить себестоимость заготовки продукции и уменьшить трудозатраты, рационально использовать вырубаемое древесное сырье. Исключение из технологического процесса операции очистки деревьев от сучьев позволяет снизить трудозатраты на 18,2 %, а себестоимость 1 м³ на 6,6 %.

Внедрение в производство разработанных технологических схем в сочетании с блочным методом ведения рубок ухода позволит повысить эффективность проведения рубок ухода и увеличить использование в народном хозяйстве вырубаемого древесного сырья.

УДК 630*65.011.54

Профессор, доктор В. Петричек, факультет лесного хозяйства, Сельскохозяйственный университет, Брно, Чехословакия

ВОЗМОЖНОСТИ МЕХАНИЗАЦИИ РАБОТ НА ПРЕДПРОМЫШЛЕННЫХ РУБКАХ УХОДА И ИСПОЛЬЗОВАНИЕ ПОЛУЧАЕМОЙ ОТ НИХ БИОМАССЫ

Доклад посвящен проблемам механизации так называемых предкоммерческих рубок ухода (прочистка, первая рубка в молодом насаждении) в хвойных насаждениях в связи с возможностями использования биомассы. В связи с тем, что это мероприятие имеет целью улучшение насаждения, следует строго следовать биологическим требованиям, вытекающим из естественного хода развития молодого насаждения. Отдельно от биологических требований и вытекающих из них схем прочисток следует учитывать также такие аспекты, как эргономика, ущерб остальному насаждению, продуктивность, а также затраты и доходы.

По сравнению с уровнем механизации прореживания и главных рубок (в частности, по масштабам использования в настоящее время лесозаготовительных машин и процессоров) операции прочистки очень слабо механизированы. Общеизвестно, что во всем мире широко распространен утомительный полумеханизированный труд с использованием цепных пил и кусторезов со всеми весьма существенными отрицатель-