П. В. Тупик, аспирант; Н. И. Якимов, доцент

ИССЛЕДОВАНИЕ ПОСЕВНЫХ КАЧЕСТВ СЕМЯН ЛИСТВЕННИЦЫ ЕВРОПЕЙСКОЙ В ЗАВИСИМОСТИ ОТ ВРЕМЕНИ ИХ ЗАГОТОВКИ

The article is devoted to studying of influence of terms of gathering of larch European cones on sowing qualities of the seeds received from them. Carried out researches have shown, that laboratory and soil capacity of seeds of a larch European, prepared during from September till April, considerably do not differ from each other and do not depend on time of g athering of cones. Es sential decrease la boratory and soil capacity of seeds is observed only at May pr eparation of seeds. C onsidering it, and a lso th at during all autumn and winter seeds from cones after drying drop out very poorly for preparation of cones the optimal is the period from March till April when resinousness of cones decreases also seeds at drying well from them are taken.

Введение. В настоящее время все больше и больше внимания уделяется проблеме рационального и неистощительного лесопользования, решить которую вполне возможно путем выращивания насаждений из интродуцентов, которые характеризуются быстрым ростом и высокой продуктивностью. Многолетние исследования отечественных и зарубежных ученых показали, что среди всего разнообразия древесных пород, искусственно вводимых на территории Беларуси, наиболее перспективной является лиственница европейская, которая, в первую очередь, отличается быстрым ростом, высокой продуктивностью и техническими свойствами древесины, а также почвозащитными и водоохранными свойствами, устойчивостью к пожарам и различным заболеваниям $[1,2]$.

Проблема внедрения лиственницы европейской в лесные культуры нашей страны приобретает особую актуальность в связи с массовым усыханием еловых древостоев, а также передачей лесному ведомству сельхозугодий, на которых необходимо создавать высокопродуктивные насаждения [3].

Для массового внедрения лиственницы европейской в лесные культуры необходимо иметь прочную лесосеменную базу этой породы на территории Беларуси. Всхожесть семян данного вида обычно невысокая и колеблется в пределах от 6% до 40% [4]. Учитывая относительно низкую всхожесть семян лиственницы европейской, на практике приходится очень часто прибегать к необходимости увеличения нормы высева семян на 1 пог. м посевной строки. В связи с этим важно знать и обладать сведениями об особенностях и закономерностях плодоношения лиственницы европейской, созревании и времени сбора шишек, а также об посевных качествах полученных из них семян.

В литературных источниках указывается, что шишки лиственницы европейской обычно созревают в сентябре - октябре в год осуществления оплодотворения, однако собирать их рекомендуется только в конце зимы. Это объясняется тем, что осенью и в начале зимы шишки лиственницы находятся в сильно засмоленном состоянии и семена после сушки практически из них не высыпаются. За зиму смолистость шишек постепенно уменьшается и уже в начале весны семена из них высыпаются легко [4]. Однако конкретные научно-обоснованные ре-

комендации о наиболее оптимальном времени заготовки шишек лиственницы европейской в условиях Беларуси отсутствуют.

Для того чтобы заполнить этот пробел, нами проводились соответствующие исследования по определению посевных качеств семян лиственницы европейской различного времени сбора с целью установления оптимального срока сбора шишек данного хвойного интродуцента.

Объект и методика исследований. Для определения посевных качеств семян лиственницы европейской различного времени заготовки на лесосеменном участке этой породы, произрастающем на территории Негорельского учебноопытного лесхоза, в середине каждого месяца с сентября по май с одних и тех же деревьев из средней и нижней части кроны осуществляется сбор шишек. После заготовки лесосеменного сырья все шишки подвергались сушке при температуре $45-50^{\circ} \mathrm{C}$, после чего определялась их влажность, соотношение выпавших и оставшихся семян в шишках, процент выхода семян из шишек. Часть семян, извлеченных в процессе сушки, ставилась на проращивание в соответствии с ГОСТ 13056.6-97 [5] с последующим определением их всхожести и энергии прорастания, а остальная часть высушенных семян высыпалась в целлофановые пакеты и помещалась на хранение в холодильник при температуре $+4-5^{\circ} \mathrm{C}$.

В начале третьей декады апреля этот семенной материал использовался нами для высева в парник с последующим определением грунтовой всхожести семян различного времени заготовки и биометрических показателей выращенных из них сеянцев. В качестве субстрата был использован хорошо разложившийся торф переходного типа болот. Перед посевом в него вносилась стартовая доза минеральных удобрений, а сами семена замачивались в растворе $0,5 \%$ марганцовокислого калия.

Результаты исследований и их обсуждение. В табл. 1 приведены сведения о влажности шишек различного срока заготовки, а также о ее корреляции со среднесуточной влажность воздуха в день сбора лесосеменного сырья, за день до его сбора и за два дня до сбора.

Корреляция между влажностью шишек и среднесуточной влажностью воздуха окружающей среды

Время заготовки шишек	Влажность шишек, $\%$	Среднесуточная влажность воздуха окружающей среды, \%		
		за день до сбора	за два дня до сбора	
Октябрь	10,4	85	74	73
Ноябрь	19,9	81	78	88
Декабрь	31,4	96	96	97
Январь	29,5	89	93	95
Февраль	26,9	94	86	73
Март	20,4	85	92	89
Апрель	10,4	80	83	87
Май	19,6	67	81	59
Коэффициент корреляции	88	96	94	

Как видно из представленного выше материала, влажность шишек в разное время заготовки различная, однако определенной закономерности на ее увеличение или уменьшение за период с сентября по май не наблюдается. В целом колебание данного показателя за исследуемый период составило $26,5 \%$ с наименьшим значением $10,4 \%$ при заготовке шишек в марте и сентябре и максимальным $36,9 \%$ в мае. В. Э. Альберт и Н. Н. Пелевина, при проведении исследований по определению времени сбора шишек сосны, пришли к выводу, что по мере их созр вания влажность шишек постепенно уменьшается, однако использовать этот критерий для определения оптимального срока сбора шишек они не рекомендуют, поскольку влажность шишек в свою очередь может значительно изменяться в зависимости от условий окружающей среды [6]. В нашем случае исследования проводились в 2006-2007 гг. Осень и зима в это время были сравнительно теплыми и влажными (данные по метеоусловиям брались на метеорологической станции «Городище»). Как видно из табл. 1 , на влажность шишек наибольшее влияние оказывает влажность воздуха окружающей среды за день до сбора лесосеменного сырья. Коэффициент корреляции в этом случае составляет 0,82 , что говорит о тесной связи между этими показателями. Таким образом, вышеприведенные сведения также подтверждают тот факт, что такой показатель, как влажность шишек лиственницы европейской не может быть использован как критерий определения времени заготовки лесосеменного сырья исследуемого древесного вида.

Ранее уже упоминалось, что осенью и зимой шишки лиственницы европейской находятся в засмоленном состоянии, в результате чего они плохо раскрываются и большинство

семян после сушки продолжают оставаться в шишках. В табл. 2. приведены сведения о динамике изменения соотношения выпавших и оставшихся семян в шишках после процесса сушки в зависимости от времени их заготовки. По представленным результатам исследований видно, что семена начинают выпадать только из шишек октябрьской заготовки, однако их количество в этом случае очень незначительное и составляет всего $5,7 \%$ от общего количества семян, находящихся в шишках. К ноябрю данный показатель возрастает примерно в 2 раза и составляет уже $10,4 \%$, в декабре наблюдается незначительное увеличение до $12,1 \%$, в январе и феврале выход семян из шишек после сушки находится примерно на одном уровне и равен соответственно 27,1 и $26,5 \%$. За зиму смолистость шишек уменьшается, в результате чего уже в марте при сушке шишек можно добиться вых ода из них семян до 676%. В апр ете этот показатель уже достигает отметки $85,4 \%$, а в мае снижается до $58,0 \%$. Для того чтобы определить, с чем это падение может быть связано, необходимо проанализировать динамику изменения такого показателя, как выход семян из шишки, который представляет собой выраженное в процентах отношение массы всех семян, находящихся в шишках, к самой массе высушенной шишки с этими семенами. Из табл. 1 видно, что данный показатель за период с сентября по апрель изменяется весьма незначительно - от 10,1 до $11,3 \%$. Однако в мае он резко снижается до 73%. Это объясняется тем, что, начиная с конца апреля, семена начинают высыпаться из шишек в природных условиях, снижая тем самым выход семян. Соответственно начинает снижаться и количество выпавших из шишек семян после сушки.

Соотношение выпавших и оставшихся после сушки семян в шишках, выход семян из шишек и их всхожесть

Время заготовки шишек	Влажность шишек, $\%$	Соотношение выпавших и ставшихся семян в шишках после сушки, $\%$		Выход семян из шишек, $\%$	Всхожесть лаборатор- ная, $\%$
		0,0	100,0	10,7	41
Сентябрь	19,9	5,7	94,3	10,9	38
Октябрь	31,4	10,4	89,6	11,3	39
Ноябрь	29,5	12,1	87,9	11,0	40
Декабрь	26,9	27,1	72,9	10,8	41
Январь	20,4	26,5	73,5	10,1	40
Февраль	10,4	67,6	32,4	11,3	41
Март	19,6	85,4	14,6	10,5	38
Апрель	36,9	58,0	42,0	7,3	25
Май					

Что касается всхожести семян различного времени заготовки (табл. 2), то здесь можно отметить, что данный показатель с сентября по апрель практически не отличается по срокам заготовления лесосеменного сырья. При этом наибольшей всхожестью (41%) характеризуются семена, заготовленные в сентябре, январе и в марте, а наименьшей (38%) - семена октябрьского и апрельского сроков заготовки. Расхождение в 3% весьма незначительное и находится в пределах ошибки опыта. Однако семена, извлеченные из шишек, которые были заготовлены в мае, характеризуются резким понижением всхожести до 25%. Таким образом, наряду со снижением выхода семян из шишек майского срока заготовления наблюдается также еще и резкое снижение их всхожести. Можно предположить, что первыми из шишек лиственницы европейской начинают высыпаться полнозернистые семена по причине их более тяжелого веса.

Для того чтобы проверить это предположение, нами были проведены исследования по определению массы полнозернистых и пустых семян лиственницы европейской. Для этого было осуществлено взвешивание каждого семени по отдельности на аналитических весах с последующим определением его категории пустое

или полнозернистое. Результаты исследований представлены в табл. 3.

Анализируя эти данные, с высокой достоверностью можно утверждать, что полнозернистые семена тяжелее пустых в 1,3 раза. Учитывая это, можно сделать заключение, что резкое снижение всхожести семян лиственницы европейской, полученных из шишек майского срока заготовки, связано с тем, что к этому времени часть полнозернистых семян в природных условиях начинает самостоятельно выпадать из шишек, увеличивая тем самым процент пустых семян в лесосеменном сырье.

В табл. 4 приводятся сведения о лабораторной всхожести семян, энергии прорастания и грунтовой всхожести в зависимости от срока их заготовки. Из данной таблицы видно, что у лиственницы европейской как лабораторная, так и грунтовая всхожесть семян, заготовленных в период с сентября по апрель, не имеют достоверных отличий, за исключением семян, заготовленных в мае. Как и ожидалось, снижение лабораторной всхожести семян этого периода заготовки привело и к снижению их грунтовой всхожести до 9%, в то время как данный показатель у остальных вариантов колеблется в пределах от 26 до 32%.

Таблица 3

Масса пустого и полнозернистого семени лиственницы европейской, мг

Категория семян	Статистические показатели					
	N	$M \pm m_{M}$	σ	v	P	t
Пустые	53	$5,00 \pm 0,22$	1,62	32,3	4,4	6,05
Полнозернистые	47	$6,61 \pm 0,15$	1,06	16,0	2,3	

Всхожесть и энергия прорастания семян лиственницы европейской в зависимости от времени заготовки

Время заготовки шишек	Энергия прорастания, $\%$	Всхожесть		Отношение грунтовой всхожести к лабораторной
	27	41	27	0,66
Октябрь	36	38	29	0,76
Ноябрь	37	39	31	0,79
Декабрь	38	40	27	0,68
Январь	39	41	32	0,78
Февраль	36	40	26	0,65
Март	38	41	30	0,73
Апрель	37	38	30	0,79
Май	20	25	9	0,36

Отношение грунтовой всхожести к лабораторной также варьирует в зависимости от срока заготовки лесосеменного сырья и составляет 0,36 у шишек, заготовленных в мае, и $0,65-0,79$ у шишек, заготовленных в апреле и ноябре. Анализируя степень и характер варьирования, можно сказать, что за период с сентября по апрель этот показатель не зависит от времени заготовки шишек.

Основные выводы и рекомендации. Таким образом, проведенные исследования показали, что лабораторная и грунтовая всхожесть семян лиственницы европейской, заготовленных в период с сентября по апрель, значительно не отличаются друг от друга и не зависят от времени сбора шишек. Существенное снижение лабораторной и грунтовой всхожести семян наблюдается только при майской заготовке лесосеменного сырья. Учитывая это, а также то, что на протяжении всей осени и зимы семена из шишек после сушки выпадают очень слабо, то для заготовки лесосеменного сырья оптимальным является период с марта по апрель, когда смолистость шишек снижается и семена при сушке хорошо из них извлекаются. При необходимости увеличения продолжительности периода сбора шишек и возможности проведения его в более ранние сроки заготовку лесосеменного сырья лиственницы европейской можно начинать в сентябре, однако в данном случае из-

влечение семян из шишек будет затруднено, в результате чего их необходимо будет подвергать дополнительной механической переработке.

Литература

1. Штукин, С. С. Экономическая эффективность выращивания лиственницы в лесах Беларуси / С. С. Штукин, П. В. Шалима, Л. И. Козловская // Лесно е и охотничье хозяйство. 2005. - № 3. - С. 21.
2. Дроздов, И. И. Интродукция ценных хвойных экзотов / И. И. Дроздов, Ю. И. Дроздов // Лесохоз. инф. - 2002. - № 10. - С. 30-53.
3. Добыш, Т. Лиственница в Беларуси: уроки прошлого и перспективы на будущее / Т. Добыш // Белорусская лесная газета [Электронный ресурс]. - 2006. - Режим доступа: http:// www.lesgazeta.info. - Дата доступа: 16.11.2007.
4. Лиственница в Беларуси / Н. К. Крук [и др.]. - Минск: Минсктиппроект, 2006. - 94 с.
5. Семена деревьев и кустарников. Правила отбора образцов и методы определения посевных качеств семян: ГОСТ 13056.6-97. - Введ. 01.07.98. - М: Издательство стандартов, 1998. 29 c.
6. Альберт, В. Э. Время сбора шишек и рост сеянцев сосны / В. Э. Альберт, Н. Н. Пелевина. Л: ЛенНИИЛХ, 1981. - 26 с.
