ЭКОЛОГИЯ, ЛЕСОВОДСТВО И ЛЕСООХОТНИЧЬЕ ХОЗЯЙСТВО

Д. В. Шиман, ассистент; Г. В. Меркуль, доцент
 ЛЕСОВОДСТВЕННО-ЭКОЛОГИЧЕСКИЕ ОСНОВЫ ПРОВЕДЕНИЯ ПОСТЕПЕННЫХ РУБОК В СОСНЯКАХ

Abstract

Gradual cutting of a w ood in pi ne forests should p rovide natural restoration of a pine without changing by other species. Timber cutting works inevitably influence on forest en vironment, especially on the soil, left part of trees of parent stand and undergrows. Influence of machines, mechanisms and technologies of timber cuttings on left part of trees is investigated on areas, where is carried out of gradual cutting. The new results help for us in process for definition of mathematical laws of safety and damageability of the left part of trees in pine forests, where gradual cutting were carried out. We used package M icrosoft E xcel f or de finition of m athematical models. In this p rocess w ere us ed such attributes as structure various kinds of tree damageability, amount of trees in various periods, intensity of cutting and others. Gradual cutting of a wood are economically e ffective, an at processing waste products on wood chips it is possible to receive the additional income.

Введение. К перспективным в условиях Беларуси несплошным рубкам главного пользования относят равномерно-постепенные, дли-тельно-постепенные, группово-постепенные (груп-пово-выборочные), полосно-постепенные и доб-ровольно-выборочные рубки.

Основным их преимуществом является полное и своевременное использование спелой древесины, непрерывность выращивания леса, сохранение лесной среды, формирование высокопродуктивных и биологически устойчивых насаждений. Проведение этих рубок способствует естественному возобновлению леса без создания дорогостоящих лесных культур, сокращает примерно на 5-10 лет оборот рубки, а также упрощает трудоемкий и сложный лесоводственный уход за молодняками $[1,2]$.

Постепенные рубки являются преобладающим видом среди несплошных рубок главного пользования, но их доля в общем объеме лесозаготовок составляет пока около 10%.

Согласно Программе развития лесного хозяйства Республики Беларусь на 2007-2011 гг., прогнозируется довести долю несплошных способов рубок леса в общем объеме рубок главного пользования до 25% [3].

Цель исследования - выявить лесоводствен-но-экологические и технико-экономические основы постепенных рубок главного пользования, проводимых в сосновых насаждениях республики с учетом их преобладающего распространения среди несплошных рубок. Для достижения цели были поставлены и выполнены следующие задачи:

- проанализирован научно-производственный опыт проведения постепенных рубок в лесном хозяйстве Беларуси и зарубежных странах;
- определено влияние технологий постепенных рубок главного пользования на основные компоненты лесных насаждений (сохранность и повреждаемость подроста и оставляемой части древостоя, повреждаемость живого напочвенного покрова);
- установлены с помощью элементов статистического анализа наиболее значимые факторы, оказывающие влияние на сохранность и повреждаемость подроста и оставляемой части деревьев;
- построены математические модели сохранности и повреждаемости подроста и оставляемой части деревьев;
- изучены закономерности формирования породной и пространственной структуры насаждений в результате проведения постепенных рубок;
- установлено влияние постепенных рубок леса на продуктивность древостоев;
- определена экономическая эффективность постепенных рубок главного пользования.

Объекты исследований. Исследования проведены по общепринятым в лесоводстве и лесной таксации методикам на 30 пробных площадях 6 лесхозов в сосняках вересковом, брусничном, мшистом, черничном, пройденных постепенными рубками главного пользования и в ельнике мшистом, сформированном в результате проведения равномерно-постепенной рубки в сосняке елово-мшистом.

Технологии постепенных рубок в лесах республики не отличаются разнообразием и сводятся в основном к разбивке участков на пасеки шириной 40 м при ширине волока $4-5 \mathrm{~m}$, направленной валке деревьев под острым углом к волоку, обрезке сучьев на месте валки деревьев, сортиментной (реже хлыстовой) тре-

левке трактором МТЗ-82 с канатно-чокерной оснасткой, очистке мест рубок [4-6].

Нами выявлены следующие категории повреждаемости оставляемой части деревьев: ошмыг ствола, ошмыг кроны, слом сучьев, слом вершины. Повреждаемость деревьев варьируется от $5,22 \%$ в сосняке черничном при трелевке древесины сортиментами до $12,04 \%$ в сосняке мшистом при трелевке древесины хлыстами. Наиболее часто встречаются повреждения в виде ошмыга кроны и ствола [7].

По результатам корреляционного анализа установлено, что общая повреждаемость оставляемой части деревьев при проведении постепенных рубок больше всего зависит от исходной полноты и запаса древостоя, количества вырубаемых деревьев и количества деревьев до рубки (коэффициенты корреляции соответственно равны $0,84,0,73,0,68$ и 0,64) [7-9].

Для построения математических моделей был проведен регрессионный анализ, по результатам которого общую повреждаемость оставляемой части деревьев при проведении постепенных рубок и отдельно по видам повреждений можно записать в виде следующих уравнений:

$$
\begin{aligned}
\Pi_{\text {}} & =-9,81292+0,02143 N_{\text {- }}-0,04148 N_{\text {вД }}+ \\
& +0,15911 И_{\mathrm{m}}+1,48000 \mathrm{~T}+11,11251 P,
\end{aligned}
$$

величина достоверности аппроксимации R^{2} составляет 0,932 ;

$$
\begin{aligned}
\Pi_{1}=-2,31324 & +0,14988 И_{\mathrm{m}}-0,13344 И_{n}+ \\
& +1,31375 \mathrm{~T},
\end{aligned}
$$

величина достоверности аппроксимации R^{2} составляет 0,875 ;

$$
\begin{array}{rl}
\Pi_{2}=-3,86 & 381+0,01094 N_{\text {Д }}-0,02374 N_{\text {вД }}+ \\
& +0,09905 И_{n}+5,35763 P,
\end{array}
$$

величина достоверности аппроксимации R^{2} составляет 0,943 ;

$$
\begin{gathered}
\Pi_{3}=-7,21020+0,01820 N_{\text {Д }}-0,03270 N_{\text {вд }}- \\
-0,01430 M+0,17100 И_{n},
\end{gathered}
$$

величина достоверности аппроксимации R^{2} составляет 0,915 ;

$$
\begin{gathered}
\Pi_{4}=6,33310-0,01455 N_{A}+0,02028 N_{\text {BД }}- \\
-5,39661 V_{\text {вД }}+0,01054 M+0,07814 И_{\mathrm{M}}- \\
-0,15023 И_{n},
\end{gathered}
$$

величина достоверности аппроксимации R^{2} составляет 0,912 .

Здесь $\Pi_{д}$ - общая повреждаемость оставляемой части деревьев при проведении постепенных рубок, $\% ; N_{\text {д }}$ - количество деревьев до рубки, шт./га; $N_{\text {вд }}$ - количество вырубаемых деревьев, шт./га; И И - интенсивность рубки по запасу, \%; Т - тип технологического процесса (условно приняты следующие значения: трелевка сортиментами -1 , трелевка хлыстами -2); $P-$ исходная относительная полнота древостоя; Π_{1},
$\Pi_{2}, \Pi_{3}, \Pi_{4}$ - повреждаемость оставляемых деревьев соответственно в виде ошмыга ствола, ошмыга кроны, слома сучьев, слома вершины, $\% ; И_{n}$ - интенсивность рубки по количеству стволов, $\% ; M$ - запас древостоя, $\mathrm{m}^{3} /$ га; $V_{\text {вд }}-$ объем вырубаемых деревьев, м ${ }^{3}$ [7].

Установлено, что сохранность подроста колеблется от $71,7 \%$ в сосняке мшистом при трелевке хлыстами до $94,0 \%$ в сосняке вересковом при трелевке сортиментами.

Количество поврежденного подроста варьирует от 6,0 до $28,3 \%$ в сосняке вересковом и мшистом соответственно. Меньше всего при рубках повреждается мелкий подрост и в большей степени крупный. Повреждаемость подроста при трелевке сортиментами составила от 0,68 до $3,44 \%$ для мелкого, от 2,15 до $8,02 \%$ для среднего и от 2,60 до $9,10 \%$ для крупного, а повреждаемость подроста при трелевке хлыстами от 1,02 до $4,30 \%$, от 3,40 до 11,13 и от 4,20 до $13,30 \%$ соответственно.

Из видов повреждений подроста нами выявлены ошмыг коры стволиков ($1,74-9,36 \%$), ошмыг кроны ($1,96-13,87 \%$), слом стволиков ($1,41-5,12 \%$) и нарушение связи корневых систем с почвой ($0,29-2,13 \%$) [10].

Сохранность и повреждаемость подроста при проведении постепенных рубок больше всего зависит от исходной полноты древостоя, количества и средней высоты подроста (коэффициенты корреляции соответственно равны $0,70,0,76$ и 0,73), в меньшей степени - от типа технологического процесса и интенсивности рубки.

По результатам проведенного регрессионного анализа общую сохранность подроста при проведении постепенных рубок и повреждаемость подроста по видам повреждений можно записать в виде следующих уравнений:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{n}}=115,94089-0,06719 N_{\text {仡 }}+0,10164 M+ \\
+0,09794 N_{\mathrm{BI}}+0,66555 \mathrm{~h}_{\mathrm{M}}-0,91074 \mathrm{~h}_{n}+ \\
+0,00195 N_{\mathrm{n}}-5,33158 \mathrm{~T},
\end{gathered}
$$

величина достоверности аппроксимации R^{2} составляет 0,931 ;

$$
\Pi_{5}=-0,04683 N_{\text {вД }}-0,00116 N_{\mathrm{I}}+1,54263 \mathrm{~T},
$$

величина достоверности аппроксимации R^{2} составляет 0,889 ;

$$
\Pi_{6}=10,22197 P+1,85368 \mathrm{~T},
$$

величина достоверности аппроксимации R^{2} составляет 0,732 ;

$$
\begin{gathered}
\Pi_{7}=-0,01838 M-0,11980 И_{\mathrm{M}}- \\
-0,00040 N_{\mathrm{\Pi}}+4,07270 H_{\mathrm{\Pi}}+1,50421 \mathrm{~T},
\end{gathered}
$$

величина достоверности аппроксимации R^{2} составляет 0,923 ;

$$
\begin{aligned}
\Pi_{8}= & 3,48821-4,17095 P-0,04832 M- \\
& -0,00040 N_{\mathrm{\Pi}}+0,42263 \mathrm{~T},
\end{aligned}
$$

величина достоверности аппроксимации R^{2} составляет 0,800 .

Здесь $\mathrm{C}_{\text {п }}$ - общая сохранность подроста, $\%$; $\Pi_{5}, \Pi_{6}, \Pi_{7}$ и Π_{8} - соответственно ошмыг коры стволиков, повреждение кроны, перелом стволиков и нарушение связи корневых систем с почвой, $\% ; H_{\text {п }}$ - средняя высота подроста, м; $N_{\text {п }}$ - количество подроста, шт./га [11].

Постепенные рубки оказывают значительное влияние на видовое разнообразие и сохранность живого напочвенного покрова, фитоценотическая структура которого изменяется в зависимости от роста встречаемости, проективного покрытия и обилия светолюбивых видов и особенно злаков, при снижении аналогичных показателей теневыносливых видов.

Восстановление травяно-кустарничкового яруса после рубок происходит быстрее, чем мохово-лишайникового; полностью живой напочвенный покров не успевает восстановиться до проведения очередного приема рубки. Его восстановление возможно только после завершения рубок через 5-8 лет [12].

Максимальная твердость почвы наблюдается в сосняке черничном, минимальная - в сосняке брусничном.

Замеры твердости почвы на лесосеках 25-30летней давности не выявили достоверных различий между степенью твердости почвы на волоках и пасеках, поэтому можно сделать вывод о том, что чер е 25 лет почва практически полностью восстанавливает свои физические свойства.

Постепенные рубки оказывают значительное влияние на формирование пространственной структуры насаждений, и нами проведены исследования в этом направлении на 8 объектах равно-мерно-постепенных двухприемных рубок и первого приема группово-постепенной рубки [13, 14].

На основании полученных материалов можно предсказать формирование на всех участках коренных лесных сообществ.

Изучение влияния постепенных рубок на таксационные показатели древостоев проводилось на 16 объектах постепенных рубок после проведения на них первых приемов. На всех участках отмечено увеличение средних высот и диаметров деревьев за счет удаления второстепенных пород и худших, отставших в росте деревьев главных древесных пород с меньшими объемами стволов, в результате чего интенсивность рубок по количеству стволов превысила интенсивность по запасу.

Более важным достоинством постепенных рубок леса является сокращение оборота рубки, о чем свидетельствуют данные, полученные на пробных площадях, заложенных в Негорельском учебно-опытном лесхозе. На двух соседних участках леса с примерно сходными лесо-водственно-таксационными показателями в 1989 г. был проведен первый прием равномер-

но-постепенной двухприемной рубки и сплошнолесосечная полосная рубка с последующим созданием лесных культур ели. С течением времени на участке с лесными культурами появился подрост сосны и мягколиственных пород в результате налета семян от прилегающих стен леса. На данный момент состав древостоя на этом участке - 4С3Е2Б1Ос, возраст - 17 лет (на 10 лет меньше среднего возраста древостоя, сформированного после проведения равномер-но-постепенной рубки). Различия в средних диаметрах и высотах составляют примерно 2 и 3 раза соответственно. На участке постепенной рубки после окончательного приема в 2002 г. был пр оведен уход за подр œтом, а в 2007 г. прореживание, при котором заготовлено $2 \mathrm{~m}^{3}$ деловой древесины, 1 м 3 дров и 10 м 3 хвороста. Запасы древостоев на участке с лесными культурами и постепенной рубки в настоящее время составляют 30 и 104 м ${ }^{3} /$ га соответственно.

На современном этапе хозяйствования требуются новые подходы при выборе более эффективных способов рубок главного пользования и их технологий. Все это связано с усилением природоохранных требований к лесохозяйственным мероприятиям, с экологической сертификацией систем лесовыращивания и лесопользования.

Повышение устойчивости лесов на основе использования экологически щадящих технологий рубок леса является важнейшим условием охраны окружающей среды, сохранения биологического разнообразия и повышения вклада лесного сектора в экономику нашей страны.

По некоторым подсчетам запасов нефти, газа и угля, пр иодных для выработки тепла и электроэнергии, в недрах планеты осталось всего на 100 лет жизни и стоимость их добычи постоянно растет.

Известно, что кроме всех полезных свойств леса, основным, реальным и экономически целесообразным местным, возобновляемым и экологически безопасным энергетическим ресурсом в Республике Беларусь является древесное топливо.

В связи с принятыми государственными программами, предусматривающими увеличение доли использования в республике собственных топ-ливно-энергетических ресурсов $[15,16]$, по нашему мнению, экономически эффективной технологией постепенных рубок леса должна быть технология, при которой порубочные остатки будут перерабатываться на древесную щепу.

Экономическая эффективность применения данной технологии сопоставлялась с традиционными технологиями постепенных рубок леса.

Принимая во внимание предпочтительное использование специализированных лесных машин для удовлетворения лесоводственных, экологических и экономических требований, а также реальные возможности машиностроительного производства страны, считаем целесо-

образным применять на постепенных рубках леса в сосняках следующий комплекс основных технологических средств в виде:

- бензиномоторных пил «Штиль» или «Хускварна», форвардера «Амкодор 2661» и измельчителя порубочных остатков «Амкодор 2902»;
- харвестера «Амкодор 2551», форвардера «Амкодор 2661» и измельчителя порубочных остатков «Амкодор 2902».

Порубочные остатки на лесосеке будут перерабатываються в древесную щепу после разработки участков постепенных рубок и вывозки заготовленной древесины.

Измельчитель «Амкодор 2902» изготовлен на базе узлов форвардера «Амкодор 2661» с колесной формулой 6×6, оснащен поднимаемым и опрокидываемым контейнером-накопителем объемом 16 м 3.

На измельчителе установлен удлиненный манипулятор (с вылетом более 10 m) и рубильный модуль финской фирмы «Kesla». Машина предназначена для измельчения порубочных остатков, низкокачественной древесины, дров, пней и т. д.

Основанием для определения текущих затрат, потребностей в трудовых ресурсах, машинах и механизмах послужили нормативнотехнологические карты, составленные нами на данные виды технологических процессов. Необходимые данные для р мчетов взяты из Отраслевых республиканских норм выработок и расценок на работы в лесном хозяйстве [17].

Попенная плата на постепенных рубках главного пользования рассчитана на основании действующих лесных такс на 01.01 .2008 г. Тарифный фонд заработной платы и расходы на содержание и эксплуатацию оборудования взяты из соответствующих граф НТК, премиальные и бригадирские составляют 40% от тарифного фонда зарплаты, дополнительная зарплата - 12% от основной зарплаты. Начисления на зарплату, включающие отчисления предприятия в фонд социальной защиты населения, в фонд занятости и местные внебюджетные фонды, приняты на уровне 36% от основ-

ной и дополнительной зарплаты. Общехозяйственные расходы составляют 40% от производственной себестоимости рубок.

С целью стимулирования и увеличения объемов постепенных рубок главного пользования, направленных на сохранение экологических функций леса, Постановлением Совета Министров Республики Беларусь от 30 мая 2007 г. №708 предусмотрено снижение таксовых цен при отпуске древесины, полученной при их проведении, на 20%.

По результатам проведенных нами расчетов можно отметить, что наименьших расходов требует проведение лесозаготовительных работ при постепенных рубках главного пользования по традиционной технологии - 6945,5 тыс. руб., наибольших - многооперационными машинами и измельчителем порубочных остатков - 9233,6 тыс. руб.

Экономический эффект выражен нами через сравнительную экономическую эффективность (таблица).

При переходе к предлагаемым нами технологиям наблюдается положительный экономический эффект, хотя он несколько ниже по сравнению с традиционной технологией постепенных рубок за счет высокой стоимости новых лесных машин. Но при увеличении среднего запаса вырубаемых древостоев экономическая эффективность рубок будет возрастать.

Получаемая из порубочных остатков щепа может использоваться в качестве альтернативного местного вида топлива для замещения углеводородного сырья (нефть, газ) на тепловых электростанциях или мини-ТЭЦ.

Заключение. В связи со всем вышеизложенным можно сделать нижеследующие выводы.

1. Беларусь обладает достаточным опытом в проведении постепенных рубок леса и высоким производственным потенциалом в области лесного машиностроения, внедрения экологически менее безопасных технологических процессов путем разработки новых комплексов машин и механизмов для лесозаготовительных работ.

Таблица
Сравнительная экономическая эффективность постепенных рубок главного пользования

Показатель Технологии традиционная с применением бенззпил, форвардера и измельчителя порубочных остатков	с применением мно- гооперационных машин и измельчителя порубочных остатков		
	200	200	200
Себестоимость рубок, руб.	6945508	8266776	9233580
Трудозатраты, чел.-дней	34,3	29,1	14,0
Доходы от реализации продукции, руб.	10740000	12465000	12465000
Прибыль, руб.	3794492	4198224	3231420
Рентабельность, $\%$	54,6	50,8	35,0

2. В большинстве лесхозов Беларуси на постепенных рубках леса до последнего времени применялись бензопилы и сельскохозяйственные тракторы МТЗ-82.
3. Даже на базе используемой лесозаготовительной техники и технологии обеспечивается относительно щадящее влияние на все компоненты лесного насаждения.
4. Степень повреждения оставляемой части деревьев, подроста и живого напочвенного покрова в процессе рубок леса во многом зависит от организации производственного процесса и рациональной технологии лесоразработок, опыта и профессионализма вальщика и операторов трелевочных механизмов, а также неуклонного соблюдения требований избранных технологических решений.
5. Восстановление нижних ярусов растительности происходит после завершения рубок через 5-8 лет.
6. Через 25-30 лет после окончания рубок практически полностью восстанавливаются фи-зико-механические свойства почвы, которые были нарушены в процессе лесозаготовок.
7. Проведение постепенных рубок в сосновых насаждениях не сопровождается сменой основных лесообразующих пород и не носит сукцессионный характер. На всех исследованных объектах формируются коренные древостои.
8. Постепенные рубки леса экономически оправданы, а при переработке порубочных остатков на древесную щепу можно получить дополнительный доход и снизить пожарную опасность в лесу.

Литература

1. Инструкция по организации проведения несплошных рубок главного пользования в лесах Республики Беларусь. - Минск, 1997. - 72 с.
2. Правила рубок леса в Республике Беларусь. - Минск: Минлесхоз, 2004. - 93 с.
3. Программа развития лесного хозяйства Республики Беларусь на 2007-2011 гг. - Минск, 2006. - 89 с.
4. Шиман, Д. В. Постепенные рубки в сосняках / Д. В. Шиман // Труды ИЛ НАН Беларуси. - Гомель: ИЛ НАН Беларуси, 2003. Вып. 57. - С. 150-152.
5. Шиман, Д. В. Опыт проведения постепенной рубки в сосняке мшистом / Д. В. Шиман // материалы докладов Междунар. науч.техн. конф. «Леса Европейского региона - устойчивое управление и развитие», Минск, 4-6 дек. 2002 г. - Минск: БГТУ, 2002. - Ч. 2. C. 28-32.
6. Шиман, Д. В. Сравнительный анализ воздействия первого приема постепенной рубки на возобновительный процесс сосняка брусничного / Д. В. Шиман // Труды БГТУ. Сер. I, Лесн. хоз-во. - 2003. - Вып. XI. - С. 105-108.
7. Шиман, Д. В. Повреждаемость оставляемой части деревьев при проведении постепенных рубок / Д. В. Шиман // Труды БГТУ. Сер. I, Лесн. хоз-во. - 2007. - Вып. XV. C. 159-161.
8. Минько, А. А. Статистический анализ в MS EXCEL / A. А. Минько. - М.: Диалектика, 2004. - 437 c.
9. Елисеева, И. И. Статистические методы измерения связей / И. И. Елисеева; под ред. А. Н. Жигарева. - Л.: Ленинградский университет, 1982. - 74 с.
10. Шиман, Д. В. Сохранность и повреждаемость подроста при хлыстовой и сортиментной трелевке в процессе проведения постепенной рубки / Д. В. Шиман, Г.В. Меркуль, М. В. Брель // Труды БГТУ. Сер. I, Лесн. хоз-во. 2004. - Вып. XII. - С. 138-139.
11. Шиман, Д. В. Математические закономерности сохранности и повреждаемости подроста в зависимости от технологий постепенных рубок / Д. В. Шиман, Г. В. Меркуль // Труды БГТУ. Сер. I, Лесн. хоз-во. - 2006. Вып. XIV. - С. 143-145.
12. Особенности формирования живого напочвенного покрова в процессе проведения постепенных рубок / Д. В. Шиман [и др.] // Труды БГТУ. Сер. І, Лесн. хоз-во. - 2007. - Вып. XV. C. 146-150.
13. Шиман, Д. В. Формирование пространственной структуры сосняков в результате проведения постепенных рубок / Д. В. Шиман // Труды БГТУ. Сер. I, Лесн. хоз-во. - 2005. Вып. XIII. - С. 89-92.
14. Модель формирования насаждения в результате проведения равномерно-постепенной рубки в сосняке мшистом / Д. В. Шиман [и др.] // Труды БГТУ. Сер. I, Лесн. хоз-во. - 2007. Вып. XV. - С. 151-155.
15. Целевая Программа обеспечения в Республике не менее 25 процентов объема производства электрической и тепловой энергии за счет использования местных видов топлива и альтернативных источников энергии на период до 2012 г.: постановление Совета Министров Респ. Беларусь от 30 дек. 2004 г. № 1680. Минск.
16. Государственная комплексная программа модернизации основных производственных фондов Белорусской энергетической системы, энергосбережения и увеличения доли использования в Республике собственных топливноэнергетических ресурсов в 2006-2010 гг.: указ Президента Респ. Беларусь от 25 авг. 2005 г. № 399. - Минск.
17. Отраслевые республиканские нормы выработки и расценки на работы в лесном хозяйстве: в 2 сб. // Лесозаготовительные работы. Минск, 2005. - Сб. 2. - 129 с.
