А. В. Астапович, аспирант

МАТЕРИАЛЫ ДЛЯ ТАКСАЦИИ СОСНОВЫХ КУЛЬТУРФИТОЦЕНОЗОВ БЕЛОРУССКОГО ПОЛЕСЬЯ

Abstract

The imperfection of reference database causes the loss of accuracy in the forest account materials and is one of the main reasons for constant errors in the characteristics of forest resources. At present many researchers hold the opinion that along with common patterns there is a need to study regional growth peculiarities, forest structure and productivity which will provide a basis for forest ta xation standards for specific a reas. In this co nnection the present pa per introduces the B elarusian P olessye which is characterized by pr evailing pines cov ering more than a half of the forest ar ea. The ar ticle represents some t axation standards for the pine plantations of the B elarusian Polessye, which were drawn up subject to the most frequent forest types of the Belarusian Polessye. The standards may as well be used for the taxation of all pine plantations of the Polessye region.

Введение. В лесном хозяйстве несовершенство нормативной базы является одним из наиболее уязвимых мест. Несовершенство нормативно-справочных данных ведет к потере точности в лесоучетных материалах и является одной из главных причин возникновения систематических ошибок в характеристике лесного фонда. Многие исследователи отмечают различия в росте и продуктивности древостоев внутри ареала в зависимости от природного района их расположения, что говорит о том, что совокупность природных факторов, определяющих условия существования и развития древесной растительности отдельных районов, различны. Стремление учесть различия в росте, строении и товарной структуре насаждений нашло свое отражение в том, что большинство исследователей в настоящее время считают необходимым изучение не только общих закономерностей, но и региональных особенностей роста, строения и товарной структуры насаждений; и для каждой страны, а внутри страны для каждого района иметь свои, так называемые «местные» лесотаксационные материалы, отображающие особенности роста и строения насаждений этого района [1]. Потребность в надежной норма-тивно-справочной базе в настоящее время особенно велика в связи с повышением интенсивности лесохозяйственного производства и возросшими требованиями к точности лесоинвентаризационных работ.

В настоящее время в пр атике лесоустройства и проектировании лесохозяйственных мероприятий все шире применяются методы почвенно-лесотипологических исследований. Их целью является устройство лесов на почвенной и лесотипологической основе, позволяющее лесному хозяйству наиболее эффективно использовать особенности типов леса, типов условий местопроизрастания и плодородия лесных почв для повышения продуктивности лесов [2]. В Программе развития лесного хозяйства Республики Беларусь на 2007-2011 гг., утвержденной Постановлением

Совета Министров Республики Беларусь 29.12.2006 г. № 1760, одним из основных направлений является повышение точности инвентаризации лесного фонда как основы рационального использования лесных ресурсов [3]. Решающая раль в этом принадлежит качественной региональной нормативной базе. И в этом плане Полесский регион наименее изучен.

Целью работы являлось составление нормативов для таксации сосновых культурфитоценозов Белорусского Полесья.

Белорусское Полесье является уникальной биогеографической областью, которая по совокупности природных факторов отличается от остальной части Беларуси и, как показывают многочисленные исследования, должна быть выделена в отдельный район, для которого необходима разработка полного комплекта научно обоснованных, отвечающих современным и перспективным требованиям нормативов для таксации леса.

Белорусское Полесье характеризуется преобладанием сосновых лесов, которые занимают более половины покрытых лесом земель [4]. В силу широкого распространения, высокого качества древесины сосне уделяется наиболее пристальное внимание исследователей. Изучению типологической структуры и особенностей типов хвойных лесов Полесья посвящены многочисленные исследования И. Д. Юркевича, Л. П. Смоляка, В. С. Гельтмана, Д. С. Голода, В. И. Парфенова, Н. Ф. Ловчего, В. С. Гельтмана, Э. П. Ярошевич, Л. И. Соснина, Н. И. Костюкевича и др. Однако необходимо отметить, что детального анализа строения, роста и продуктивности сосновых лесов в рамках Полесья не проводилось.

Высокая степень участия сосны в составе лесов Белорусского Полесья и ее хороший рост обусловлены, прежде всего, почвенно-грунтовыми особенностями Полесской низменности, которым посвящены многочисленные исследования Л. П. Смоляка, Е. Г. Петрова, А. И. Русаленко, А. Д. Майснера, Н. И. Костюкевича и других, и из которых следует, что уровень грун-

товых вод и влажность почв в Полесье оказывают значительное положительное влияние на рост и продуктивность сосновых фитоценозов.

Объекты исследования. Представленность типов леса Белорусского Полесья, распространенность древесной породы определили выбор объектов исследования. Для исследования были взяты сосновые культурфитоценозы наиболее представленных типов леса: мшистого ($33,1 \%$) и черничного ($19,3 \%$), занимающие в общем $52,4 \%$ сосновых лесов Белорусского Полесья [2].

Методика исследования. Для изучения сравнительной продуктивности древостоев использовали типолого-аналитический метод. В. К. Захаров отмечает, что однородность средних значений таксационных признаков легче найти в рамках типов леса. Принадлежность к одному естественному ряду уже подтверждена в определенной степени самим типом леса [5]. В. Е. Ермаков отмечает, что при сборе материала по четко выраженным в пределах лесорастительной зоны типам леса и использовании как одного из признаков выделения типа леса почвенно-грунтовых условий, типологический метод составления таблиц динамики продуктивности дает надежные результаты [6]. Другим важным признаком отнесения древостоя к одной линии развития служит одинаковая скорость роста по высоте максимального в древостое дерева, т. е. критерием в подборе однородного экспериментального материала служил также аналитический способ, или метод указательных насаждений.

Исследование хода роста сосновых культурфитоценозов производилось методом пробных площадей, отведенных в сосновых культурфитоценозах в различные возрастные периоды. При отводе пробных площадей соблюдались все условия, обеспечивающие высокую степень однородности объектов исследования, что дало возможность производить сравнения по всем таксационным признакам и обеспечило высокую достоверность полученных результатов. Все объекты закладывались в чистых, наиболее полных, имеющих наибольшие суммы площадей сечений сосновых культурфитоценозах, с относительно одинаковой схемой размещения в рядах и между рядами и количеством посадочных мест около 7 тыс. на га. На пробных площадях проводились исследования, предусмотренные методикой, включающей разработки А. В. Тюрина, В. К. Захарова, В. Е. Ермакова, В. В. Загреева, Н. Н. Свалова и др.

При исследовании сосновых культурфитоценозов важное место отводилось оценке эдафических условий, так как они в значительной степени влияют на рост и развитие культурфитоценозов и их продуктивность. Почвенно-

грунтовые условия являются одним из основных показателей, характеризующих четко выраженный тип леса и определения принадлежности исследуемых культурфитоценозов к одному естественному ряду развития.

Для оценки принадлежности к определенному типу леса по центру пробной площади закладывался почвенный разрез ($2,0-2,2$ м) с описанием почвы по генетическим горизонтам и взятием образцов для лабораторных исследований. Лабораторный анализ гранулометрического состава почвы, проведенный по методу Сабанина, подтвердил практическую однородность почв в рамках типов леса. Преобладающими почвами мшистого типа леса являются дерновоподзолистые почвы, слабооподзоленные, внизу с пятнами оглеения, песчаные, на песке связном до глубины $30-50$ см, сменяются песками рыхлыми. Черничный тип леса характеризуется почвами: дерново-подзолистыми, средне- (силь-но-) оподзоленными, глеевыеми с иллювиальногумусовым горизонтом, песчаные, на песке связном, сменяемом песком рыхлым.

Рассматриваемые типы леса по гранулометрическому составу почв практически однородны внутри себя, имеют одинаковое потенциальное плодородие почвы, что дает основание рассматривать каждый из них как однородный объект и позволяет проводить их дальнейшее исследование уже в рамках типов леса.

Таблицы хода роста представляют собой систему таксационных показателей, которые характеризуют насаждения во времени. Обязательным условием такой системы является взаимосвязь таксационных показателей между собой, отвечающая строению насаждения в различные периоды его жизни. Система представляет математическую модель насаждения в его динамике. Все таксационные показатели должны отображать естественный ход роста исследуемых насаждений.

Далее отдельно для каждого типа леса исследовались взаимосвязи между таксационными показателями, анализировались корреляционные уравнения, выражающие наиболее вероятные линии изменения важнейших таксационных показателей древостоев в зависимости от возраста [7]. Оптимальное уравнение должно иметь наибольшее значение по критерию Фишера, коэффициенту детерминации, стандартной ошибке оценки зависимой переменной, т. е. как можно точнее описывать естественный ход роста и при этом иметь наипростейшую структуру. B результате выравненные аналитическим способом таксационные показатели принимались за исходные и вносились в эскиз таблиц хода роста сосняков мшистых и сосняков черничных. Для определения абсолютной полноты 1,0 древостоев в работе использовали статистический метод, теоретически разработанный и в последующем

реализованный Н. П. Анучиным [8], Н. Н. Сваловым [8], А. В. Вагиным [9], В. В. Антанайтисом. Метод заключается в установлении уровня полноты нормальных древостоев на основе средних уровней сумм площадей сечений с учетом $2-3$-кратной величины стандартного отклонения, оправдал себя в различных географических зонах.

Запас насаждения M определяли через площадь сечения G, высоту H и видовое число F по формуле $M=G H F$, что дало возможность сохранить общий уровень запасов насаждений, которые имеются в настоящее время. Средние видовые числа найдены через выравненные средние высоты по установленной закономерной связи видовой высоты с высотой модельных деревьев.

Результаты. В результате работы были составлены эскизы таблиц х ода р ста для сосняков мшистых и сосняков черничных Белорусского Полесья, представляющие собой математическую модель изменения средних таксационных показателей множества древостоев, представленных в Полесье сосновыми культурфитоценозами в разные возрастные периоды (табл. 1).

Таблица 1
Ход роста сосновых культурфитоценозов Белорусского Полесья

$\begin{gathered} A, \\ \text { лет } \end{gathered}$	$H \text {, }$	$\begin{aligned} & D, \\ & \text { cm } \end{aligned}$	$\begin{gathered} N, \\ \text { шт } \\ \text { ш, } \end{gathered}$	$\begin{gathered} G, \\ \mathrm{~m}^{2} / \mathrm{ra} \end{gathered}$	HF			
Сосняк мшистый								
10	4,5	4,8	6312	13,23	0,66			4,0
15	7,2	6,6	5632	19,28	0,573	80	8,0	5,3
20	9,5	8,8	3922	24,02	0,537	123	8,6	
25	11,6	11,0	294	27,74	0,516	166	8,	
30	13,6	13,	235	31,12	0,502	213	9,3	
35	15,4	14,	89	32,95	0,49	250	7,5	
40	17,1	16,	56	34,	0,4		7,0	
45	18,6	18,	132	35,53	0,481	318	6,6	
50	20,0	20,1	153	36,61	0,477	349	6,3	
55	21,	21,	00	37,2	0,473	374	4,9	
60	22,3	23,	893	37,	0,4	396	4,6	
65	23,3	24,7	801	38,20	0,469	417	4,2	6,4
70	24,2	26,0	724	38,54	0,467	436	3,7	6,2
75	25,	27,4	657	38,64	0,	450	2,8	
80	25,7	28,	602	38,72	0,464	46	2,5	
85	26,4	29,9	55	38,	0,463	475	2,5	
		31,0	515	38,91	0,463	484	1,9	
Сосняк черничный								
10	4,6	5,1	6195	13,67	0,661	42		
15	7,4	6,9	5554	20,8	0,569	88	9,3	5,9
20	10,0	9,6	35	25,	0,530	137	9,7	6,8
25	12,4	12,1	2588	29,83	0,508	188	10,3	
30	14,6	14,5	1993	32,85	0,495	237	9,9	
35	16,6	16,7	1598	34,90	0,485	28	8,8	
40	18,4			6,4	0,47	321	7.9	

Окончание табл. 1

$A \text {, }$	$H,$	$\begin{aligned} & D, \\ & \text { cm } \end{aligned}$	Nшт.	$\begin{gathered} G, \\ \mathrm{~m}^{2} / \mathrm{ra}^{2} \end{gathered}$	HF	$\begin{gathered} M, \\ \mathrm{~m}^{3} / \mathrm{ra}^{\prime} \end{gathered}$	Изм. M, м ${ }^{3} /$ га	
45	20,0	20,	1141	37,64	0,4	35	7,2	
50	21,4	22,	00	38,5	0,4	388	6,3	
55	22,7	23,	896	39,2	0,46	416	5,6	
60	23,8	24,				43		
	24,7	26,	746	39,98	0,4	458	,0	
70	25,6	27,2	697	40,4	0,4	478	3,9	
75	26,3	28,	656	40,71	0,46	493	3,1	
	7,0	28	624	41,02	0,45	509	3,1	
		29,	59			520	2,3	

В настоящее время в лесоустроительной практике широкое распространение получили: Стандартная таблица сумм площадей сечений и запасов на 1 га при полноте 1,0 , разработанная в 1935 г. ЦНИИЛХом под руководством Н. В. Третьякова, рекомендованная для использования на территории СССР, и составленные для Беларуси Нормативные таблицы для инвентаризации лесного фонда БССР [10]. Однако Н. В. Третьяков, автор первых стандартных таблиц, придерживался мнения, что наряду с общими таблицами следует иметь и местные стандартные таблицы, которые будут лучше отражать особенности роста насаждений конкретного региона [11].

Используя полученные закономерности в динамике роста сосновых древостоев, наиболее представленных в Полесье типов леса - сосняков мшистых и сосняков черничных, можно составить местные материалы для таксации сосновых культурфитоценозов Белорусского Полесья по типам леса, которые будут более полно отражать действительную продуктивность (табл. 2).

Таблица 2

Материалы для таксации сосновых культурфитоценозов Белорусского Полесья по типам леса

Сосняк мшистый				Сосняк черничный			
$\begin{aligned} & h, \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} G \\ \mathrm{~m}^{2} / \mathrm{\Gamma a} \\ \hline \end{gathered}$	$\begin{gathered} M \\ M^{3} / \Gamma a \end{gathered}$	F	M	$\begin{gathered} G \\ \mathrm{~m}^{2} / \mathrm{ra}^{2} \end{gathered}$	$\begin{gathered} M \\ \mathrm{M}^{3} / \mathrm{ra} \end{gathered}$	F
5	14	45	0,64	5	14,7	47	
6	16,4	60	0,60		17,	62	
7	18,8	76	0,581	7	19,9	81	0,578
8	21,2	95	0,561	8	22,5	100	0,558
9	23,1	113	0,54	9	4,	18	
10	25	133	0,53	10	25,8	137	0,5
11	26,7	154	0,5	11	27,5	157	0,
12	28,4	175	0,5	12	29,	179	
13	30,1	199	0,50	13	30,7	20	0,5
14	31,8	223	0,50	14	32,2	224	0,49
15	32,6	243	0,49	15	33,3	246	
16	33	262		16			

Окончание табл. 2

Сосняк мшистый				Сосняк черничный			
$\begin{aligned} & h, \\ & \text { m } \end{aligned}$	$\begin{gathered} G \\ \mathrm{~m}^{2} / г а \end{gathered}$	$\begin{gathered} M, \\ \mathrm{~m}^{3} / г \mathrm{a} \end{gathered}$	F	$\begin{aligned} & h, \\ & \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{gathered} G \\ \mathrm{~m}^{2} / г \mathrm{a} \end{gathered}$	$\begin{gathered} M, \\ \mathrm{~m}^{3} / г \mathrm{a} \end{gathered}$	F
17	34,2	283	0,487	17	35,2	290	0,484
18	35,1	306	0,484	18	36,1	312	0,480
19	35,8	327	0,480	19	36,9	334	0,477
20	36,6	350	0,478	20	37,6	356	0,474
21	37,1	370	0,475	21	38,3	379	0,471
22	37,6	391	0,472	22	39,0	402	0,469
23	38,1	412	0,470	23	39,3	422	0,467
24	38,5	433	0,468	24	39,7	443	0,465
25	38,6	450	0,466	25	40,1	464	0,463
26	38,8	469	0,465	26	40,6	487	0,461
27	38,9	486	0,463	27	41,0	509	0,459
28	39,1	505	0,462	28	41,5	532	0,458

Используя правило Эйхгорна - Герхарда суммы площадей сечений и запасы древостоев являются функцией их средней высоты и учитывая, что в Белорусском Полесье преобладает сосна, нами предложена Стандартная нормативная таблица для таксации сосновых культурфитоценозов Белорусского Полесья, составленная в зависимости от средней высоты соснового древесного яруса, которая может быть использована для таксации всех сосновых культурфитоценозов Белорусского Полесья (табл. 3).

Таблица 3
Стандартная нормативная таблица для таксации сосновых культурфитоценозов Белорусского Полесья

$H, \mathrm{~m}$	G, $\mathrm{m}^{2} / г \mathrm{a}$	M, $\mathrm{m}^{3} / г \mathrm{a}$	$H F$	F
5	14,4	46	3,2	0,641
6	17,0	62	3,6	0,604
7	19,5	79	4,0	0,578
8	21,7	97	4,5	0,558
9	23,8	116	4,9	0,543
10	25,7	136	5,3	0,531
11	27,4	157	5,7	0,520
12	28,9	178	6,1	0,512
13	30,3	199	6,6	0,505
14	31,6	221	7,0	0,499
15	32,7	242	7,4	0,494
16	33,8	264	7,8	0,489
17	34,7	286	8,2	0,485
18	35,5	308	8,7	0,481
19	36,3	330	9,1	0,478
20	37,0	351	9,5	0,475
21	37,6	373	9,9	0,473
22	38,1	394	10,3	0,470
23	38,6	416	10,8	0,468
24	39,0	437	11,2	0,466
25	39,4	458	11,6	0,464
26	39,8	479	12,0	0,463
27	40,1	499	12,4	0,461

Окончание табл. 3

h, м	G, м $^{2} / г \mathrm{a}$	$M, \mathrm{~m}^{3} /$ га	$H F$	F
28	40,4	520	12,9	0,459
29	40,7	540	13,3	0,458
30	40,9	560	13,7	0,457
31	41,1	580	14,1	0,456
32	41,3	600	14,5	0,455
33	41,4	620	15,0	0,453
34	41,6	640	15,4	0,453
35	41,7	659	15,8	0,452

Заключение. В результате нашей работы составлены лесотаксационные материалы, которые могут быть рекомендованы для таксации всех сосновых культурфитоценозов Белорусского Полесья.

Литература

1. Загреев, В. В. Географические закономерности роста и продуктивности древостоев/ В. В. Загреев. - М.: Лесная промышленность, 1978. - 240 с.
2. Ловчий, Н. Ф. Экологический анализ структуры и продуктивности сосновых лесов Беларуси / Н. Ф. Ловчий. - Минск: Беларуская навука, 1999. - 263 с.
3. Программа развития лесного хозяйства Республики Беларусь на 2007-2011 гг.: утв. Советом Министров Республики Беларусь от 29 дек. 2006 г., № 1760. - Минск, 2006. - 39 с.
4. Юркевич, И. Д. Леса Белорусского Полесья / И. Д. Юркевич, Н. Ф. Ловчий, В. С. Гельтман. - Минск: Наука и техника, 1977. - 288 с.
5. Захаров, В. К. Сравнительная продуктивность сосновых и еловых насаждений при одинаковых лесорастительных условиях / В. К. Захаров // Лесное хозяйство. - 1958. - Вып. 2. C. 21-26.
6. Ермаков, В. Е. Продуктивность лесов Белоруссии и пути ее повышения: автореф. дис. ... д-ра с.-х. наук: 06.03.02 / В. Е. Ермаков; ЛТА им. Ленсовета. - Л., 1984. - 40 с.
7. Свалов, Н. Н. Моделирование производительности древостоев и теория лесопользования / Н. Н. Свалов. - М.: Лесная промышленность, 1979. - 215 с.
8. Анучин, Н. П. Лесная таксация / Н. П. Анучин. - М.: Лесная промышленность, 1982. - 552 с.
9. Вагин, А. В. Критерии полноты сосновых насаждений СССР / А. В. Вагин. - М.: Лесная промышленность, 1974. - 115 с.
10. Справочник таксатора / В. С. Мирошников [и др.]; под общ. ред. В. С. Мирошникова. -2-е изд. - Минск: Ураджай, 1980. - 360 с.
11. Справочник таксатора / Н.Т. Третьяков [и др.]; под общ. ред. Н. Т. Третьякова. - М.: Лесная промышленность, 1965. - 120 с.
