УДК 004.65(075.8)

Каледина Н. Б., старший преподаватель

ОЦЕНКА ТОЧНОСТИ ВОСПРОИЗВЕДЕНИЯ ДЕТАЛЕЙ В РЕПРОДУКЦИОННОЙ СИСТЕМЕ

Article is denoted the estimation accuracy of reproduction the line image in system «scanner – imagesetter», separation of dependence of different parameters of process on tinned result.

Введение. Для высокого качества репродукции важна не только точность воспроизведения цвета, но и точность воспроизведения деталей изображения.

Под деталями изображения, как правило, подразумевают штриховые элементы. На процесс воспроизведения таких элементов влияет множество факторов (разрешения считывания и вывода, масштаб, качество считывающей системы, экспозиция, время записи, светочувствительность фотоматериала и т. д.). Результаты зависят и от размеров, геометрического положения штриха относительно системы записи – считывания [1].

Основная часть. Для оценки воздействия параметров ввода и вывода на качество проработки мелких деталей и определения влияния различных стадий процесса на конечный результат разработана методика на основе метода функции передачи модуляции (ФПМ) [2].

Для оценки параметров компьютерной издательской системы целесообразно рассчитывать ФПМ системы и ее отдельных звеньев по экспериментально полученным краевым функциям при использовании тест-объекта с прямоугольным распределением интенсивности излучения, так как построение теста с синусоидально меняющейся плотностью затруднительно.

Для экспериментальной проверки такого подхода был использован тест-объект, представляющий собой 11 групп периодически повторяющихся наборов штрихов. Ширина периода, состоящего из равных по величине штриха и просвета, увеличивается, начиная от 25 мкм в геометрической прогрессии с коэффициентом, равным $\sqrt{2}$. Сканирование тестобъекта проводилось на планшетном сканере NextScan F4100 при постоянном разрешении $R_c = 1693$ ррі и переменных параметрах:

порог бинаризации: 0–100% с шагом через 10%;

– функция сканирования: Excellent, Good.

Краевая функция была построена на основе методики оценки ФПМ фотографических материалов растровым методом [3] с тем отличием, что аналогом краевой функции может служить связь порога бинаризации и ширины штриха. Ширина штриха на этапе ввода оценивалась с применением программы Photoshop 8.0 на изображениях, которые были отсканированы без обработки.

В качестве переменных факторов при этих измерениях принимались:

- вид функции сканирования x_1 ;

 уширение штриха x₂, мкм (разница между шириной штриха на оригинале и в цифровом файле);

- частота x_3 , мм⁻¹.

Для проведения эксперимента на первом этапе использован план эксперимента 2×3, где 2 — два вида функции сканирования, а 3 — три уровня уширения штриха или частоты.

Ошибки воспроизводимости опытов определялись по результатам шести параллельных опытов при уширении штриха 30 мкм и частоте 18 мм⁻¹. Они соответственно были равны 4% и 0,041 мм⁻¹.

План этих экспериментов и результаты наблюдений приведены в табл. 1, где x_1 и x_2 кодированные уровни факторов, определяемые по формуле

$$x_i = \frac{\widetilde{x}_i - 0.5(\widetilde{x}_{i\max} - \widetilde{x}_{i\min})}{0.5(\widetilde{x}_{i\max} - \widetilde{x}_{i\min})}, \qquad (1)$$

где x_i — кодированный уровень *i*-го фактора; $\tilde{x}_i, \tilde{x}_{i\max}, \tilde{x}_{i\min}$ — текущее, максимальное и минимальное значения *i*-го фактора.

В качестве функции оптимизации взяты величины порога бинаризации (*y*₁ и *y*₂).

Для качественного фактора были установлены уровни: $x_1 = -1$, ФПМ для функции сканирования Excellent; $x_2 = +1$, ФПМ для функции сканирования Good. Уширение штриха было установлено на трех уровнях: 0; 30 и 60 мкм.

Опыты проводились в случайном порядке во избежание влияния систематических ошибок.

Статистическую обработку результатов эксперимента проводили по методике работы [4]. В результате расчетов было получено уравнение регрессии в виде полинома второго порядка

$$y_1 = 93 - 1,2x_1 + 25x_2 - 18x_2^2.$$
 (2)

Матрица плана 2×3 и результаты опытов

x_1	x_2	$x_1 x_2$	x_2^2	y_1	y_2	
-1	-1	+1	+1	50,0	0,50	
-1	0	0	0	96,4	7,14	
-1	+1	-1	+1	100,0	50,00	
+1	-1	-1	+1	50,0	1,00	
+1	0	0	0	89,3	10,71	
+1	+1	+1	+1	100,0	50,00	
Σ						
-7,1	100	0	101,5	485,7	119,3	

Значимость коэффициентов этого уравнения определили путем сравнения их абсолютных значений с доверительными интервалами. В результате получили, что второй коэффициент незначим. Таким образом, уравнение примет вид

$$y_1 = 93 + 25x_2 - 18x_2^2.$$
 (3)

По критерию Фишера $F = S^2_{aa}/S^2_y$, где S^2_y — дисперсия параметра оптимизации *y*, S^2_{aa} — дисперсия адекватности, возникающая вследствие различия экспериментальных и расчетных величин параметра оптимизации, была доказана адекватность этого уравнения.

Анализ уравнения показывает, что функции сканирования не влияют на параметр оптимизации, определяющим фактором является уширение штриха. С его увеличением растет и *y*₁.

Если уширение штриха изменять от 0 до -60 мкм ($x_2 = -60$; -30; 0), то получим значения, приведенные в столбце y_2 в табл. 1. Ошибка воспроизводимости в этом эксперименте составляет 1%. После обработки результатов эксперимента и проверки значимости коэффициентов уравнения регрессии, приведенные по указанной выше методике, получена адекватная модель

$$y_2 = 8,9 + 24,6x_2 + 16,5x_2^2$$
. (4)

Из этого уравнения также видно, что вид функции сканирования не влияет на параметр оптимизации, главным фактором остается уширение штриха. Максимальное значение $y_2 = 50\%$ получен при уширении 0 мкм. Минимальное значение составляет 0,5% при уширении штриха –60 мкм. При исследовании краевых функций эксперименты проводились по тому же плану 2×3 , где 2 — два вида функции сканирования, а 3 — три уровня уширения штриха, или частоты. В качестве параметра оптимизации была взята величина краевой функции (y_3 и y_4).

Ошибки воспроизводимости составили соответственно $S_3 = 0,041$ и $S_4 = 0,01$.

Матрица плана 2×3 и результаты эксперимента представлены в табл. 2.

После статистической обработки результатов этих экспериментов по той же методике [4] и проверки значимости коэффициентов уравнений регрессии получены адекватные модели ($F_3 < 1$; $F_4 = 6,2 < 12,1$ при $\alpha = 0,01, f_1 = 3$ и $f_2 = 5$)

$$y_{3} = 0.945 + 0.25x_{2} - 0.195x_{2}^{2};$$

$$y_{4} = 0.100 - 0.243x_{2} + 0.158x_{2}^{2}.$$
(5)

Анализ этих уравнений показывает, что и в этих случаях вид функции сканирования не влияет на величину краевой функции.

Наибольшее влияние на этот параметр оптимизации оказывает уширение штрихов в файле. Правда, характер влияния этого фактора различен: максимальная величина $y_3 \approx 1,0$ получена при $x_2 = +1$ (уширение штрихов 60 мкм), а максимальная величина $y_4 = 0,5$ получена при $x_2 = -1$ (уширение 0 мкм). Анализ табл. 1 и 2 также показывает, что между краевой функцией и порогом бинаризации существует тесная корреляционная связь, так как коэффициент парной корреляции $r_{1,3} = 1,00$.

Таблица 2

x_1	x_2	$x_1 x_2$	x_2^2	<i>y</i> ₃	<i>Y</i> 4	
-1	-1	+1	+1	0,50	0,50	
-1	0	0	0	0,97	0,07	
-1	+1	-1	+1	1,00	0,01	
+1	-1	-1	+1	0,50	0,50	
+1	0	0	0	0,92	0,13	
+1	+1	+1	+1	1,00	0,02	
Σ_3						
-0,05	1,00	0	3	4,89		
Σ_4						
0,07	-0,97	0,01	1,03		1,23	

Матрица плана 2×3 и результаты опытов

Эта связь может быть представлена в виде

$$y_3 = 0,01y_1 - 0,003. \tag{6}$$

Таким образом, для изотропных систем с симметричной функцией размытия точка симметрии краевой функции имеет координаты (0; 0,5).

Для оценки влияния функции сканирования x_1 и частоты x_3 изображения на его воспроизведение y_5 по плану 2×3 был проведен эксперимент, результаты которого приведены в табл. 3.

В табл. 3 x_1 и x_3 — кодированные уровни сканирования и частоты (5, 18, 30 мм⁻¹), а y_5 — ФПМ звена сканирования.

Ошибка воспроизводимости опытов составляет 0,0205 ($S_5 = 0,0205$).

После статистической обработки результатов этого эксперимента и проверки значимости коэффициентов уравнения регрессии получена адекватная модель ($F_p = 1,67 < F_{\kappa p} = 5,79$ при $\alpha = 0,05; f_1 = 2; f_2 = 5$) в виде полинома второго порядка

$$y_5 = 0,24 - 0,04x_1 - 0,43x_3 + 0,26x_3^2.$$
 (7)

Анализ этого уравнения показывает, что наибольшее влияние на исследуемый параметр оптимизации оказывает частота, влияние вида ФПМ существенно меньше. Максимальная величина $y_5 = 0,97$ получена при $x_1 = -1$ и $x_3 = -1$, т. е. при ФПМ Excellent и частоте 5 мм⁻¹. Минимальная величина $y_5 = 0,03$ получены при $x_1 = +1$ и $x_3 = +1$. т. е. при ФПМ Good и частоте 30 мм⁻¹.

Таким образом, для вышеприведенных условий ФПМ сканирующего звена имеет более высокие значения в режиме Excellent.

Методика определения ФПМ выводного звена обрабатывалась на фотовыводном устройстве Primesetter 74. При записи использовалась разрешающая способность $R_B = 3386$ dpi и переменная интенсивность лазерного излучения, составлявшая 8609, 13 122, 18 000 мДж/м². Тест-объект располагался так, что направление штриха соответствовало направлению сканирования вывода. Это же условие соблюдалось при сканировании при входе. Ширина штриха измерялась на фотоформах.

В табл. 3 приведены результаты эксперимента, проведенного по плану 2×3 , устанавливающего связь краевых функций (y_6) с функциями сканирования $x_1 = -1$, Excellent, $x_1 = +1$, Good, и уширением штриха $x_2 = -1$, что соответствует 0 мкм, $x_2 = +1$, — 60 мкм. Ошибка воспроизводимости опытов $S_6 = 0.04$.

После обработки результатов этого эксперимента и проверки значимости коэффициентов уравнения регрессии получена адекватная модель в виде параболы

$$y_6 = 0,895 + 0,245x_2 - 0,15x_2^2.$$
 (8)

Из этого уравнения видно, что на параметр оптимизации оказывает влияние только уширение штриха, вид ФПМ не оказывает влияния.

Максимальная величина $y_6 = 1,0$ получена при $x_1 = -1$ и $x_2 = +1$, т. е. при ФПМ Excellent и уширении штриха 60 мкм.

Минимальная величина 0,5 получена при $x_1 = \pm 1$ и $x_2 = -1$, т. е. для любой ФПМ и уширении штриха 0 мкм.

Для сопоставления ФПМ сканирующего звена и ФПМ фотовывода при различных частотах был проведен эксперимент по плану 3×6, где 3 — три уровня частоты $(5, 18, 30 \text{ мм}^{-1})$, а 6 — шесть уровней $\Phi \Pi M$ ($x_1 = -1$, $\Phi \Pi M$ звена сканирования при функции сканирования Excellent; $x_1 = -3/5$, ФПМ системы сканер – фотовыводное устройство при функции сканирования Excellent; $x_1 = -1/5$, ФПМ звена фотовывода при функции сканирования Excellent; $x_1 = +1/5$, ФПМ звена сканирования при функции сканирования Good; $x_1 = +3/5$, ФПМ системы сканер – фотовыводное устройство при функции сканирования Good; $x_1 = +1$, ФПМ звена фотовывода при функции сканирования Good). Ошибка воспроизводимости опытов равна в данном случае 0,0205 $(S_7 = 0,0205).$

В качестве параметра оптимизации y_7 была выбрана кривая функция E в относительных единицах. Опыты проводились в случайном порядке. Матрица плана и результаты опытов приведены в табл. 4 (x_1 — вид ФПМ, x_2 — частота).

Статистическую обработку проводили по методике [4]. После расчетов коэффициентов уравнения и проверки их значимости получили адекватную модель ($F_p = 2,3 < F_{\kappa p} = 3,52$ при $\alpha = 0,01$; $f_1 = 12$ и $f_2 = 17$) в виде полинома второго порядка.

Таблица 3

x_1	x_2	$x_1 x_2$	x_2^2	<i>Y</i> 5	y_6
-1	-1	+1	+1	0,95	0,50
-1	0	0	0	0,30	0,52
-1	+1	-1	+1	0,10	1,00
+1	-1	-1	+1	0,90	0,50
+1	0	0	0	0,18	0,87
+1	+1	+1	+1	0,03	0,98

Матрица плана 2×3 и результаты опытов

Матрица плана 3×6 и результаты опытов

x_1	x_2	$x_1 x_2$	x_1^2	x_2^2	y_7
-1	-1	+1	1	+1	0,73
-3/5	-1	+3/5	9/25	+1	0,75
-1/5	-1	+1/5	1/25	+1	0,84
+1/5	-1	-1/5	1/25	+1	0,92
+3/5	-1	-3/5	9/25	+1	0,98
+1	-1	-1	1	+1	1,00
-1	0	0	1	0	0,22
-3/5	0	0	9/25	0	0,28
-1/5	0	0	1/25	0	0,35
+1/5	0	0	1/25	0	0,43
+3/5	0	0	9/25	0	0,55
+1	0	0	1	0	0,67
-1	+1	-1	1	+1	0,04
-3/5	+1	-3/5	9/25	+1	0,04
-1/5	+1	-1/5	1/25	+1	0,11
+1/5	+1	+1/5	1/25	+1	0,22
+3/5	+1	+3/5	9/25	+1	0,34
+1	+1	+1	1	+1	0,47

Уравнение полинома имеет следующий вид:

$$y_{7} = 0,396 - 0,2x_{1} - 0,333x_{2} + 0,037x_{1}x_{2} + 0,045x_{1}^{2} + 0,12x_{2}^{2}.$$
 (9)

Анализ этого уравнения показывает, что наибольшее влияние в этом случае оказывает частота. Влияние вида ФПМ — меньше. Максимальная величина параметра оптимизации получена при ФПМ звена фотовывода при функции сканирования Good и частоте 5 мм⁻¹. Минимальное значение 0,04 получено при ФПМ звена сканирования при функции сканирования Ехсellent и частоте 30 мм⁻¹.

Подставляя в уравнение (9) соответствующие уровни для различных ФПМ, получим систему уравнений, устанавливающих связь *у* с частотой.

При $x_1 = -1$ (ФПМ звена сканирования при функции Excellent)

$$y_7 = 0,241 - 0,37x_2 + 0,12x_2^2.$$
 (10)

При $x_1 = -3/5$ (ФПМ системы сканер – фотовыводное устройство при функции сканирования Excellent)

$$y_7 = 0,292 - 0,355x_2 + 0,12x_2^2.$$
(11)

При $x_1 = -1/5$ (ФПМ звена фотовывода при функции сканирования Excellent)

$$y_7 = 0.358 - 0.34x_2 + 0.12x_2^2$$
. (12)

При $x_1 = +1/5$ (ФПМ звена сканирования при функции сканирования Good)

$$y_7 = 0,438 - 0,326x_2 + 0,12x_2^2.$$
 (13)

При *x*₁ = +3/5 (ФПМ системы сканер – фотовыводное устройство при функции сканирования Good)

$$y_7 = 0.532 - 0.311x_2 + 0.12x_2^2$$
. (14)

При $x_1 = +1$ (ФПМ звена фотовывода при функции сканирования Good)

$$y_7 = 0,641 - 0,296x_2 + 0,12x_2^2.$$
 (15)

Заключение. Анализ результатов проведенных экспериментов показывает, что метод ФПМ дает возможность объективно оценить качество системы, в частности точность воспроизведения штрихового изображения, выделить влияние различных факторов процесса на различные параметры этого процесса.

Литература

1. Оценка параметров репродукционной системы «сканер – фотовыводное устройство» / Ю. С. Андреев [и др.] // Полиграфия. – 2006. – № 5. – С. 86–87.

2. Фризер, Х. Фотографическая регистрация информации / Х. Фризер. – М.: Мир, 1978. – 253 с.

3. Андреев, Ю. С. Исследование растровых методов оценки фотографических материалов для штриховой репродукции / Ю. С. Андреев, И. Н. Алексеев, Г. Ф. Немых // Сб. научн. тр. ГНИИХФП. – М., 1975. – С. 83–87.

4. Вознесенский, В. А. Статистические методы планирования эксперимента в техникоэкономических исследованиях / В. А. Вознесенский. – М.: Статистика, 1981. – 264 с.

Поступила 23.12.2008.