ФИЗИКА

У ДК 539.12

Д. В. Кленицкий, ст. преподаватель; В. Н. Чайчиц, студент

ОГРАНИЧЕНИЯ НА ГЕОМЕТРИЧЕСКИЙ РАЗМЕР КВАРК-ГЛЮОННОЙ ПЛАЗМЫ В СТОЛКНОВЕНИЯХ ТЯЖЕЛЫХ ИОНОВ ВЫСОКИХ ЭНЕРГИЙ

We study the limitations on the spatial size of quark-gluon plasma which is probably produced in high energy heavy ion collisions at the AGS, SPS, RHIC and LHC colliders. The plasma size depends from the size of hadron phase and collision energy. The estimation of the plasma size shows that the finite volume effects are need to consider at AGS and SPS energies and these effects can be neglected at RHIC and LHS energies.

Введение. Термин «кварк-глюонная плазма» был введен в конце 70-х гг. прошлого столетия. По сути, это понятие означает существование макроскопического ансамбля слабовзаимодействующих кварков и глюонов при температуре T в некоторой пространственной области, сравнимой с размерами адрона. Данное состояние является экстремальным состоянием ядерной материи, которое образуется лишь пр и достаточно высокой плотности энергии (при высокой температуре и/или большой плотности барионного заряда).

Первоначально интерес к возможным экстремальным (субадронным) состояниям ядерного вещества возник в связи с проблемами космологии и астрофизики. Лишь в далекие времена Большого Взрыва, а также в глубоких недрах нейтронных звезд при сильном гравитационном сжатии можно было представить существование условий, характерных для состояния кварк-глюонной плазмы. Позже была осознана экспериментальная возможность создания экстремальных условий существования ядерной материи путем отбора особых событий (центральных столкновений с малым прицельным параметром) в соударениях адронов и, особенно, тяжелых ионов высоких энергий. На начальной стадии центрального столкновения тяжелых ядер нуклоны каждого из них вынуждены проходить «сквозь строй» встречных нуклонов. Части из них удается избежать катастрофического разрушения. Остальные (те, которые полностью разрушились) порождают неупорядоченные цветные частицы (кварки и глюоны), которые не могут покинуть ограниченную область пространства без рекомбинации в устойчивые состояния (наблюдаемые адроны). А это требует определенного времени, достаточно длительного по сравнению со временем «прямого» взаимодействия. Поэтому они тормозятся и растрачивают свою энергию на рождение большого количества новых цветных частиц и разогрев (термализацию) всей этой массы. При ус-

ловии, что превышена критическая плотность энергии (>2 ГэВ $/$ фм 3) или, другими словами, превышена критическая температура (200 M B), происходит фазовый переход в кварк-глюонную плазму. Затем образовавшийся сгусток материи (файрбол) начинает расширяться и охлаждаться. При понижении температуры до критической T_{c} происходит переход из кварк-глюонной плазмы в обычную адронную материю. Дальнейшая эволюция системы заканчивается, когда все взаимодействия прекращаются, характеристики адронов больше не меняются (состояние системы «замораживается»). Начинается разлет адронов, часть из них или продукты их распадов попадают на детекторы. На основе экспериментальных данных физики пытаются восстановить картину процесса.

Экспериментальная база для формирования кварк-глюонной плазмы в земных условиях - это четыр е ускорителя в мире. Три уже существуют: ускоритель AGS/BNL (Alternating Gradient Synchrotron/Brookhaven National Laboratory), на котором ядерная программа начала выполняться в 1992 г.; ускоритель SPS/CERN (Super Proton Synchrotron/the European Organization for Nuclear Research), на котором ядерная программа началась с 1994 г.; ускоритель RHIC/BNL (Relativistic Heavy Ion Collider), запущенный в 2003 г. Ускоритель LHC/CERN (Large Hadron Collider) должен быть запущен в 2008 г. В ускорителях AGS и SPS мишень фиксирована, ускорители RHIC и LHC являются коллайдерами. На AGS и SPS энергия столкновения ядер в системе центра масс равна соответственна 5 и 17 ГэВ на нуклонную пару. На коллайдере RHIC энергия пучков достигает 100 ГэВ на нуклон, при столкновении в системе центра масс получается 200 ГэВ на пару нуклонов, в LHC энергия пучков - 2750 ГэВ/нуклон, что соответствует 5500 ГэВ на пару нуклонов в системе центра масс. Разнообразные оценки показывают, что энергии ускорителя SPS, вероятно, уже вполне достаточно для того, чтобы в столкновении была создана кварк-глюонная плазма, и

уж тем более это так при энергиях заработавшего четыре года назад ускорителя RHIC и строящегося ускорителя LHC. Менее ясен ответ на вопрос: что происходит при энергии ускорителя AGS?

Таким образом, есть определенные основания думать, что в соответствующих экспериментах на короткое время удается получить кваркглюонную плазму, хотя надежных доказательств того, что это реально имеет место, еще нет. Все эти эксперименты очень дорогие, проводятся на уникальных ускорителях только в рамках крупных международных проектов, в которых участвуют российские и белорусские ученые.

Возможность регистрации кварк-глюонной плазмы в столкновении тяжелых ионов предполагает измерение геометрического размера области, в которой материя находится в данной фазе. Размер фазы кварк-глюонной плазмы может значительно влиять на вид распределения вторичных частиц в фазовом пространстве. Цель данной работы заключалась в том, чтобы получить ограничения на возможный размер кварк-глюонной плазмы, следующие из второго начала термодинамики, в современных экспериментах на RHIC и LHC, а также в экспериментах на ускорителях AGS и SPS.

Основная часть. Второе начало тер модинамики относится к фундаментальным законам физики макросистем. Данный закон является результатом обобщения очень большого экспериментального материала. Одной из формулировок второго начала термодинамики является принцип возрастания энтропии: энтропия замкнутой макросистемы не уменьшается - она либо возрастает, либо остается постоянной

$$
\begin{equation*}
\Delta S \geq 0 \tag{1}
\end{equation*}
$$

где $\Delta S=S_{2}-S_{1}$ - изменение энтропии системы при ее переходе из одного состояния в другое.

Таким образом, если система находится в ка-ком-либо макросостоянии с данной энтропией S_{1}, то с подавляющей вероятностью следует ожидать, что она перейдет в состояние с энтропией S_{2}, где $S_{2} \geq S_{1}$. При фазовом переходе «кваркглюонная плазма - адроны» начальная энтропия системы равна энтропии образовавшейся в столкновении кварк-глюонной плазмы $S_{1 \text { ккї }} S$; энтропия конечного состояния является энтропией образовавшихся после фазового перехода адронов $S_{2 \mathrm{a}}=S$. Тогда из второго начала термодинамики (1) следует, что $S_{\text {кпп }} \leq S_{\mathrm{a}}$. Представляя энтропию системы S через объемную плотность энтропии $s: S=s V$, где V - объем системы, из данного неравенства мы найдем

$$
\begin{equation*}
V_{\mathrm{krII}} \leq \frac{s_{\mathrm{a}}}{s_{\mathrm{krII}}} V_{\mathrm{a}}, \tag{2}
\end{equation*}
$$

где $V_{\text {кпп }}$, V_{a} и $s_{\text {кгп }}, s_{\mathrm{a}}$ - соответственно объемы и плотности энтропии кварк-глюонной плазмы и адронов.

Уравнение (2) представляет собой ограничение на объем кварк-глюонной плазмы, который может быть образован в столкновении. Данное ограничение зависит от объема адронной фазы.

Объемная плотность энтропии s системы связана с плотностью потенциала свободной энергии F соотношением

$$
\begin{equation*}
s=-\left(\frac{\partial F}{\partial T}\right)_{V} \tag{3}
\end{equation*}
$$

Более 90% образовавшихся адронов в столкновении являются π-мезонами. Для газа невзаимодействующих π-мезонов плотность потенциала свободной энергии имеет вид [1]

$$
\begin{equation*}
F_{\pi}=-\frac{\pi^{2}}{30} T^{4} \tag{4}
\end{equation*}
$$

где T - температура газа адронов. В квантовой хромодинамике - теории, описывающей взаимодействие кварков, потенциал свободной энергии в случае, когда кварки находятся на малом расстоянии друг от друга, имеет вид [2]

$$
\begin{equation*}
F_{\text {кхх }} \approx-\frac{8 \pi^{2}}{45} T^{4} F_{0} \tag{5}
\end{equation*}
$$

где $F_{0}=1+21 / 32 n_{f}, n_{f}$ - число ароматов (типов кварков) в кварк-глюонной плазме.

В случае кварк-глюонной плазмы решающую роль играют легкие u - и d-кварки, которые присутствуют в «обычных» адронах, а также более тяжелый странный s-кварк, так как энергии покоя более тяжелых кварков c, b и t намного превышают типичные энергии, характерные для фазового перехода. Поэтому считаем, что кварк-глюонная плазма состоит из u - и d-кварков, либо u-, d - и s-кварков, так что $n_{f}=2$, или $n_{f}=3$.

Используя (3)-(5), найдем объемные плотности энтропии для адронной фазы и кваркглюонной плазмы

$$
\begin{equation*}
s_{\mathrm{a}}=\frac{2 \pi^{2}}{15} T^{3}, \quad s_{\mathrm{krII}}=\frac{32 \pi^{2}}{45} F_{0} T^{3} . \tag{6}
\end{equation*}
$$

Подставляя (6) в (2), вычислим

$$
\begin{equation*}
V_{\mathrm{krII}} \leq \frac{3}{16\left(1+\frac{21}{32} n_{f}\right)} V_{\mathrm{a}} \tag{7}
\end{equation*}
$$

Предполагая, что образовавшиеся объемы кварк-глюонной плазмы и фазы адронов имеют сферическую форму, найдем ограничение на радиус кварк-глюонной плазмы

$$
\begin{equation*}
R_{\mathrm{k} г \mathrm{II}} \leq \sqrt[3]{\frac{3}{16\left(1+\frac{21}{32} n_{f}\right)}} R_{\mathrm{a}} \tag{8}
\end{equation*}
$$

где R_{a} - радиус адронной фазы.

Параметры ускорителей и радиусы кварк-глюонной плазмы

Ускоритель	Тип ускорителя	Год запуска	Пучок ядер	\sqrt{s}, ГэВ	$R_{\text {кгп }}$, фм
AGS/BNL	Фиксированная мишень	1992	${ }^{197} \mathrm{Au}$	5	4
SPS/CERN	Фиксированная мишень	1994	${ }^{208} \mathrm{~Pb}$	17,5	6,5
RHIC/BNL	Коллайдер	2003	${ }^{197} \mathrm{Au}$	200	9
LHC/CERN	Коллайдер	2008	${ }^{208} \mathrm{~Pb}$	5500	12

Полагая в (8) $n_{f}=2$, определим

$$
\begin{equation*}
R_{\text {кгп }} \leq 0,43 R_{\mathrm{a}} . \tag{9}
\end{equation*}
$$

Радиус адронного источника R_{a} может быть найден по данным адронной интерферометрии, основанной на изучении двухчастичных корреляций наблюдаемых адронов [3]. Для столкновения ядер

$$
\begin{equation*}
R_{\mathrm{a}}=0,7\left(A \ln \left(\frac{\sqrt{s}}{2 m}\right)\right)^{1 / 2} \tag{10}
\end{equation*}
$$

где R_{a} выр ажено в ферми ($1 ф$ м $=10^{-13}$ см), A_{-}- массовое число сталкивающихся ядер; \sqrt{s} - энергия столкновения ядер в системе центра масс сталкивающихся ядер; m - масса протона.

Таким образом, используя формулы (9) и (10), получим

$$
\begin{equation*}
R_{\text {кгп }} \leq 0,3\left(A \ln \left(\frac{\sqrt{s}}{2 m}\right)\right)^{1 / 2}, \tag{11}
\end{equation*}
$$

где $R_{\text {кгп }}$ выражено в ферми.
Параметры коллайдеров AGS, SPS, RHIC и LHC, а также результаты вычисления радиуса кварк-глюонной плазмы по формуле (11) приведены в таблице.

Заключение. Мы нашли ограничение на размер кварк-глюонной плазмы, вытекающее из второго начала термодинамики для экспериментов AGS, SPS, RHIC и LHC. Размер кварк-глюон-

ной плазмы зависит от размера адронной фазы, созданной в столкновении ядер при высоких энергиях, и увеличивается с энергией столкновения. В работе [4] было показано, что если размер кварк-глюонной плазмы меньше 6 фм, то требуется учитывать влияние эффектов, связанных с малым размером плазмы на наблюдаемые характеристики частиц, рожденных в столкновении. Например, из-за соотношения неопределенностей Гейзенберга частицы в малом объеме будут иметь более широкое распределение в импульсном пространстве. Оценка размера кваркглюонной плазмы в этой работе показывает, что в экспериментах на RHIC и LHC этим влиянием можно пренебречь. Если кварк-глюонная плазма была образована на ускорителях AGS и SPS, то требуется рассматривать эффекты, связанные с малым объемом этого состояния.

Литература

1. Letessier, J. QCD equations of state and the QGP liquid model / J. Letessier, J. Rafelski // Phys. Lett. - 1998. - Vol. B168, № 3. - P. 117.
2. N ieto, A. P erturbative Q CD a t hi gh t emperature / A. Nieto // OHSTPY-HEP-T-96-019. 1996. - P. 25.
3. Wi edemann, U. H anbury B rown-Twiss interferometry / U. Wiedemann, U. Heinz // P hys. Rep. - 1999. - Vol. 319. - P. 201-206.
4. Finite size effects on pion s pectra in relativistic he avy-ion c ollisions / A. Ayala [et a 1.] // Phys. Lett. - 2006. - Vol. B346. - P. 6.
