показателей. Перепад давления предлагаемой структуры позволяет субмиллиметровые частицы адсорбента использовать В слое. Благодаря более высокой скорости массообмена этих мелких частиц адсорбции регенерации улучшается на стадиях И общая производительность системы. Другим результатом контроля падения давления является возможность обработки более высоких скоростей потока.

Список использованных источников

1. Министерство природных ресурсов и экологии России, справочник НАИЛУЧШИХ ДОСТУПНЫХ ТЕХНОЛОГИЙ «Обезвреживание отходов термическим способом (сжигание отходов)»// Москва, 2015, Т.3, С.144.

2. Гумерова Г.И., Гоголь Э.В., Васильев А.В. «Новый подход к качественному и количественному определению диоксинов» // статья, Известия Самарского научного центра Российской академии наук//Самара// 2014, С.1717-1720

3. Sina Salimi, Mohsen Gholami, Theoretical study of parallel radial adsorber: a novel configuration of temperature swing gas adsorption bed // Adsorption, Springer Science+Business Media, LLC 2017. P. 871-878

4. Gholami, M., Talaie, M.R., Aghamiri, S.F.: The development of a new LDF mass transfer correlation for adsorption in fixed beds. // Adsorption 22(2), 2016, P. 195–203.

УДК 628.355

А.В. Желовицкая¹, А.Ф. Дресвянников²

¹ Казанский национальный исследовательский технический университет им. А.Н. Туполева ² Казанский национальный исследовательский технологический университет

ПЕРСПЕКТИВНЫЕ ОКИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ КАК Элемент зеленой химии в очистке стоков промышленных предприятий

Аннотация. Исследование посвящено изучению перспективных окислительных технологий на основе пероксида водорода для деструкции 1,3-дигидроксибензола в коаксиальном бездиафрагменном электрохимическом реакторе. Результаты исследования показали, что степень превращения составила 95,78% при плотности тока - 4 кА/м² и рH = 11,0; время электролиза 3 часа.

Задачей «Зеленой химии» является создание технологических процессов и систем, которые не оказывают вредного воздействия на окружающую среду и человека, а, следовательно, относятся к малоотходным или безотходным технологиям. Одним из направлений развития «Зеленой химии» является использование водного раствора пероксида водорода в качестве окислителя. Однако производство H₂O₂, основанное на методе многостадийного антрахинонового окисления приводит к высокому потреблению энергии и образованию отходов [1]. Поэтому технико-технологические аспекты охраны на окружающей среды направлены разработку новых технологических процессов, на основе которых создается безотходное производство с обеспечением высоких технико-экономических показателей и комплексного использования природных ресурсов. Среди новых технологических процессов выделяют так называемые advanced oxidation processes - перспективные окислительные процессы [2], направленные на создание технико-технологических решений, способствующих минимизацию сбросов загрязняющих веществ в окружающую среду. Перспективные окислительные технологии основаны на генерации высоко реактивных разновидностей гидроксильных радикалов, используемых в процессах окислительной деструкции органических соединений, растворенных или рассеянных в водной среде. Среди перспективных окислительных процессов различаю нефотохимические – озонирование в щелочной среде (O₃/HO⁻), озонирование с пероксидом водорода (O₃/H₂O₂), реагент Фентона (Fe²⁺ или Fe³⁺/H₂O₂), окисление влажного воздуха (Wet air oxidation), сверхкритическое окисление воды (Supercritical water oxidation), каталитическое озонирование с пероксидом водорода (O₃/Cat/H₂O₂) и фотохимические – фотолиз воды в вакуумном ультрафиолете, $У\Phi/O_3/H_2O_2$, $У\Phi/H_2O_2$, фото-Фентон (Fe²⁺ или $Fe^{3+}/H_2O_2/Y\Phi$), гетерогенный фотокатализ: ZnO/Y Φ , $SnO_2/Y\Phi$. ТіО₂/УФ, ТіО₂/ H₂O₂/УФ и т.д. [1, 3].

Гидроксильный радикал сильный неселективный химический окислитель (таблица. 1), который очень быстро реагирует с большинством органических соединений (таблица. 2). При этом генерированные, гидроксильные радикалы энергично атакуют практически все органические соединения [3].

Таблица 1 - Стандартные потенциалы восстановления некоторых окислителей относительно нормального водородного потенциала

No	Окислитель	Стандартный потенциал		
		восстановления, В		

1	хлор (Cl ₂)	1.36
2	перманганат калия (KMnO4)	1.67
3	пероксид водорода (H ₂ O ₂)	1.77
4	атомарный кислород	1.78
5	озон (О3)	2.07
6	положительно заряженные дырки на	2.35
	диоксиде титана, TiO ₂ ⁺	
7	гидроксильный радикал (·OH)	2.80

Таблица 2 - Константа скорости реакции (k, м⁻¹с⁻¹) гидроксильного радикала с органическими соединениями

N₂	Органическое соединение	Гидроксильный радикал
1	хлорированные алкены	$10^9 - 10^{11}$
2	фенолы	$10^9 - 10^{10}$
3	азотсодержащие органические соединения	$10^8 - 10^{10}$
4	ароматические органические соединения	$10^8 - 10^{10}$
5	кетоны	$10^9 - 10^{10}$
6	спирты	$10^8 - 10^9$

Процесс генерирования гидроксильных радикалов может быть реализован как химическим, так и электрохимическим способами. Предпочтение отдают электрохимическим, поскольку они безвредны для окружающей среды и имеют возможность получения H₂O₂, HO[·] и HO₂[·] радикалов *in-situ*. Также не требуется применения химических реагентов, затраты электроэнергии не высокие, организация процесса проста, эффективность плотности тока высокая и низкий потенциал, а также эффективное разрушение загрязнителей и многосторонность. Электрохимические перспективные окислительные процессы [4] заключаются в электрохимической генерации пероксида водорода в катодной ячейке двух-электронным восстановлением кислорода:

 $O_2 + 2H^+ + 2e \rightarrow H_2O_2$

Для реализации электрохимической деструкции ароматических соединений использовали бездиафрагменный электрохимический реактор с емкостью рабочей камеры 0,4 м³ и коаксиальным расположением электродов (рис. 1). В качестве катода использовали сталь марки X18H10T, а анодным материалом служил сетчатый оксидо-рутениевый титановый электрод (OPTA). Эксперименты проводились на модельных растворах органического соединения, принадлежащего к классу фенолов: 1,3-дигидроксибензол.

Рис. 1 - Коаксиальный бездиафрагменный электрохимический реактор: 1 – корпус реактора, 2 – крышка, 3 – анод (сетчатый ОРТА), 4 – катод (сталь X18H10T), 5 – токоподводы; (б) Модельная установка коаксиального бездиафрагменного электрохимического реактора

Методы непрямого электрохимического окисления заключаются в электрохимической генерации на катоде H₂O₂ или метастабильных радикалов в результате электродной реакции с участием кислорода и последующих химических реакциях интермедиатов (HO', HO₂') с органическими субстратами в объеме электролита при анодном разложении интермедиатов:

 $H_2O_2 \rightarrow HO_2 + H^+ + e$

 $HO_2 \rightarrow O_2 + H^+ + e$

Для интенсификации процессов эффективность массопереноса обеспечивали конфигурацией электролизера существенной И разностью площадей электродов. Выбор данной конфигурации электролизера объясняется более симметричным распределением электрического поля при существенной разнице площадей катода и При этом [5, 6] постулируется, что скорость процесса на анода. центральном электроде - катоде будет много больше скорости процесса на периферийном электроде. Процесс электрохимической деструкции проводили при различных режимах, варьируя катодную время электролиза, концентрацию 1.3плотность тока, дигидроксибензола, а также рН. Катодную плотность тока изменяли в $\kappa A/m^2$, концентрацию диапазоне 4÷20 1,3-дигидроксибензола 0,025÷1 ммоль/л, а величину рН варьировали в пределах изменяли в пределах 9÷14.

Результаты эксперимента можно видеть в таблице 3.

Концентрация NaOH, моль · л ⁻¹	Степень превращения 1,3-	
	дигидроксибензола, %	
0,001	97,12	
0,01	95,78	
0,1	66,56	
1,0	60,03	

Таблица 3 - Влияние концентрации NaOH на степень превращения 1, 3-дигидроксибензола.

Также была проведена оценка влияния характера среды на степень превращения органического вещества (таблица. 4). Из таблицы 4 можно заключить, что щелочной характер среды способствует более глубокому превращению 1,3-дигидроксибензола. Поэтому все последующие эксперименты проводились при pH=11.

Таблица 4 - Влияние характера среды на степень превращения 1, 3-дигидроксибензола.

pН	ХПК до электролиза,	ХПК после	Степень	
	мг О ₂ ·л ⁻¹	электролиза	превращения, %	
		мг О₂∙л⁻¹		
7	286,92	95,43	66,74	
11	297,88	91,42	69,31	

Для оценки деструкции 1,3-дигидроксибензола оценили влияние времени (таблица. 5).

Таблица 5 - Степень превращения 1,3-дигидроксибензола в процессе
деструкции

Органическое вещество	Степень превращения, %			
	1 час	2 часа	3 часа	5 часов
1,3-дигидроксибензол + 1,0M NaOH	42,58	51,26	60,04	61,46
1,3-дигидроксибензол + 0,01M NaOH	75,75	82,98	95,78	-

Из таблицы 5 очевидно, что оптимальным временем с максимальной степенью превращения органического вещества является 3 часа. Тогда как последующее увеличение длительности процесса не приводит к высокой степени превращения вещества.

Таким образом впервые продемонстрирована возможность электрохимической деструкции 1,3-дигидроксибензола в коаксиальном бездиафрагменном электрохимическом реакторе. Установлено, что гидродинамический режим работы бездиафрагменного коаксиального электрохимического реактора способствует обогащению объема реактора продуктами электрохимического генерирования метастабильными окислительными агентами – HO₂[•] и HO[•] радикалами, которые способны разрушать молекулы органических соединений.

Список использованных источников:

1. Guangsen Xia, Yonghong Lu, Haibo Xu Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode // Electrochimica Acta, 2015. - V. 158 - P. 390-396.

2. M. A. Oturan *et al.* Electrochemical Advanced Oxidation Processes (EAOPs) for the Environmental Applications // Portugaliae Electrochimica Acta, 2007. - V. 25 - P. 1-18.

3. A. L. N. Mota *et al.* Advanced oxidation processes and their application in the petroleum industry: a review // Brazilian Journal of Petroleum and Gas, 2008. - V. 2. - I. 3. - P. 122-142.

4. Tzayam Péreza, Gabriela Coriab, Ignasi Sirésc, José L. Navab, Agustín R. Uribea Electrosynthesis of hydrogen peroxide in a filter-press flow cell using graphite felt as air-diffusion cathode // Journal of Electroanalytical Chemistry, 2018. – V. 812. – P. 54-58.

5. С. Ю. Ситников 2000 Математическая модель коаксиального электролизера с существенно отличающимися размерами электродов Известия вузов. Проблемы энергетики: научнотехнический и производственный журнал № 3-4 – С. 112-114.

6. А. Ф. Дресвянников 2001 Моделирование коаксиального электрохимического реактора с центральным узкоцилиндрическим электродом Тез. докл. XIII Всерос. научно-техн. конф. «Внутрикамерные процессы в энергетических установках, акустика, диагностика, экология», 2001. – С. 252.