Список использованных источников

- 1. Байченко А.А., Иванов Г.В. Флокулярная флотация тонких угольных шламов *II* Материалы науч.-техн. конф., 19-20 ноября 1999. Кемерево, 1999. С. 9-29.
- 2. Шевченко Т.В. Прикладная коллоидная химия. Флокулянты и флокуляция. Кемерево: КемТип, 2004.
- 3. Rulyov N.N. "Application of ultra-flocculation and turbulent microflotation to the removal of fine contaminants from water", <u>Colloids & Surfaces A</u>, Vol. 151, 1999a, 283-291.
- 4. Rulyov N.N. Ultra-flocculation: Theory, Experiment, Applications // In book "Particle Size Enlargement in Mineral Processing". Montreal (Canada). 2004. P. 197–214.

УДК 622.765:661.877

Д.Т. Амантаев, А.Р. Мамбеталиева Казахский национальный технический университет им. К.И. Сатпаева, г. Алматы, Казахстан

ИЗУЧЕНИЕ ПРОЦЕССА ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ МОЛИБДЕНА ИЗ КОЛЛЕКТИВНОГО КОНЦЕНТРАТА

Аннотация. Указанный технический результат заключается в том, что в способе флотации молибденовых руд, включающем коллективную флотацию молибдена в щелочной среде, создаваемой известью, коллективную флотацию проводят в присутствии собирателя и вспенивателя, затем концентрат коллективной флотации после операций сгущения и десорбции в присутствии сернистого натрия направляют на молибденовую флотацию в присутствии собирателя с получением молибденового концентрата пенным продуктом, а хвосты молибденовой флотации направляют на классификацию, причем тонкий продукт направляют на шламовую флотацию в присутствии собирателя, а хвосты молибденовой флотации направляют на классификацию, причем тонкий продукт направляют на шламовую флотацию в присутствии собирателя и вспенивателя, а грубый, после доизмельчения, направляют на песковую флотацию в присутствии собирателя и вспенивателя, после чего концентраты шламовой и песковой флотации объединяют в молибденовый концентрат, а хвосты направляют в отвал.

Ключевые слова: флотация, молибденовый концентрат, собиратели.

Введение. Основным медьсодержащим минералом первичных халькопирит, а зоны вторичного сульфидного обогащения - халькозин. Молибден представлен практически во всех молибденитом. месторождениях Среди рудных количественно преобладает пирит, флотационные свойства которого зависят от генезиса месторождения и степени его активации ионами меди. Молибденит обладает высокой природной флотоактивностью по сравнению с сульфидами меди и пиритом, но в связи с низким его содержанием в руде наблюдается его замедленная флотация. Общее количество сульфидов не превышает 5 - 6 %, в связи с этим физикохимические свойства руды зависят от состава и рудовмещающих пород. [1-5].

В коллективной флотации около 60% зарубежных фабрик в качестве собирателя применяют ксантогенаты или их смеси с длиной углеводородного радикала. Также применение более селективные по отношению к пириту собиратели: дитиофосфаты, алкилтионокарбаматы, эфиры ксантогеновых кислот. Для зарубежных фабрик характерно применение в разных циклах флотации нескольких собирателей или композиций отдельных собирателей. Сочетание сильных и слабых собирателей применяется в флотации халькопиритовых руд, халькозиновых при грубом помоле. Подача нерастворимых в воде собирателей, как правило, осуществляется в измельчение и насосы. В лучшего распределения время ДЛЯ пульпе последнее диспергирования применяют их в смеси с пенообразователями или в виде растворов в органических жидкостях.

В качестве дополнительного собирателя для молибденита на фабрик применяют аполярные масла (дизельное большинстве топливо, керосин, индустриальное масло и др.). Среди вспенивателей положение при флотации медно-молибденовых ведущее метилизобутилкарбинол сохраняют И алкиловые эфиры полиалкиленгликолей. Первый имеет сравнительно растворимость в воде, создает хрупкую пену и обладает высокой селективностью. Эфиры полиалкиленгликолей - более сильные вспениватели. Они создают относительно прочную и устойчивую пену, способную удерживать грубые частицы даже при высоком значении рН. Это в некоторой степени снижает их селективность.

В последние годы наблюдается тенденция применения селективных по отношению к пириту собирателей, позволяющих обеспечить высокое извлечение меди и молибдена, создать благоприятные условия для разделения коллективного концентрата.

концентрат обрабатывают Коллективный кислородом температуре 65-90°C, давлении 0,05-1,0 МПа и рН 11,0; селективная флотация медно-молибденового концентрата c молибденового концентрата с выделением молибдена в пенный продукт проводится при рН равным 6-8. Недостатками данного способа являются использование в операции десорбции кислорода дорогого и дефицитного материала и необходимость повышенного давления в операции десорбции концентрата, что также существенно удорожает операцию селекции. Наиболее близким по технической сущности и достигаемому результату к предлагаемому является медно-молибденовых включающий способ разделения руд, измельчение руды и коллективную флотацию меди и молибдена в щелочной среде. В цикле коллективной медно-молибденовой флотации в качестве собирателя применяют керосин и ксантогенат, а для депрессии пирита используют известь. Перед разделением коллективной флотации медно-молибденовый концентрат сгущают при загрузке до рН 11,5, обеспечивая десорбцию и удаление собирателя поверхности значительной части c Перемешивают в течение 4-5 ч с обработкой пульпы острым паром при температуре, близкой к кипению, и аэрацией, затем ведут селективную флотацию (после разбавления пульпы водой при рН 8,6-8,8) с добавками углеводородного масла. При этом в пенный продукт извлекают молибденит, камерным продуктом получают медный концентрат.

Проведен анализ и определены причины снижения извлечения молибдена в условиях увеличения в руде доли первичных сульфидов меди. Показано, что основные потери молибдена связаны с необходимостью более "глубокой" депрессии пирита.

Список использованных источников

- 1. Ж.Баатархуу. Научное обоснование и разработка эффективной технологии обогащения медно порфировых руд на основе изучения их генетико -морфологических особенностей // Автореферат диссертации на соискание ученой степени доктора технических наук. М. 2002.
- 2. Елисеев Н.И., Яшина Г.М. и др. Особенности флотационного поведения пиритов р- и п- типа // В кн. Современное состояние и перспективы развития теории флотации. -М., Наука. 1969. С. 232 237.

- 3. Рыков К.Е. Влияние условий образования пирита на его флотационные свойства // Изв. Вузов. "Цветная металлургия". 1962. №1. -С. 24-27.
- 4. Поспелов Н.Д. и др. Обогащение медно-молибденовых руд за рубежом с учетом формирования месторождения. М., 1985. Вып. 5.-С. 7-12.
- 5. Sutulov A. International molibdenum enciclopidic // Processing and metallurgy, Santiego de Chile. 1979. Vol. 2. P. 25 30.

УДК 622.765

А.Б. Бегжан, А.Р. Мамбеталиева

Казахский национальный технический университет им. К.И. Сатпаева, г. Алматы, Республика Казахстан

ИЗУЧЕНИЕ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ МЕДНО-ЗОЛОТОСОДЕРЖАЩИЙ РУДЫ МЕСТОРОЖДЕНИЯ «КОКТАСЖАЛ»

Аннотация. Проведены анализ современным способам извлечения золота из медистых золотосодержащих руд. Представлена проблема извлечения золота из медистых золотосодержащих руд цианированием. Описаны взаимодействие минералов меди с цианистыми растворами и характер взаимосвязи частиц золота с минералами и породой в руде, замедляющих скорость растворения золота и вызывающих повышенный расход цианида.

Ключевые слова: цианирование, скорость извлечения, упорные руды, медистые руды, концентрат, способы добычи золота, флотация.

разработке «Алтай полиметаллы» при месторождения устойчивого «Коктасжал» преследует цель экологического социального развития путем определения нормативных стандартов в области экологии, создания комфортных и безопасных условий труда, включая охрану здоровья и технику безопасности на производстве, путем оценки последствий для местного населения в таких областях, здоровье и безопасность населения, равноправие как