Таким образом, полученные результаты свидетельствуют о том, что синтезированный диэтаноламид ОЛДА обладает поверхностно-активными свойствами и может быть использован в качестве смачивателя или эмульгатора.

Список использованных источников

- 1. Лутфуллина Г.Г. Энергоресурсосберегающие технологии получения кожевенного и мехового полуфабриката с применением разработанных аминосодержащих пав и плазменной обработки/Г.Г. Лутфуллина//Автореферат дис.докт. техн. наук, 2012. 36с.
- 2. Лутфуллина Г.Г. Оценка влияния синтезированных аминосодержащих ПАВ на процессы производства меха/Г.Г. Лутфуллина//Кожевенно-обувная пром-сть, 2010, №6, С.33-35.
- 3. Лутфуллина, Г.Г. О применении поверхностно-активных веществ для крашения шкурок лямки/ Г.Г. Лутфуллина, Ю.Н. Сизова// Новые технологии и материалы в производстве кожи и меха: сб. статей Междунар. научно-практ. конф. студентов и молодых ученых. Казань: КГТУ, 2005. -С. 48-52.
- 4. Ланге, К.Р. Поверхностно-активные вещества: синтез, свойства, анализ, применение / К. Р. Ланге; под науч. Ред. Л. П. Зайченко. Спб.: Профессия, 2004. 240 с.

УДК 661.185

Г.Г. Лутфуллина, А.А. Фатхутдинова

Казанский национальный исследовательский технологический университет

РАСТИТЕЛЬНОЕ СЫРЬЕ КАК ИСТОЧНИК ПОЛУЧЕНИЯ НЕИОНОГЕННЫХ ПАВ

Аннотация. Синтезированы поверхностно-активные вещества (ПАВ) неионогенного характера (нПАВ) с использованием жирных кислот рапсового и подсолнечного масел: моно- и диэтаноламиды. Выявлено, что продукты синтеза характеризуются «первой» и «второй» амидными полосами. Определена критическая концентрация мицеллообразования (ККМ) (1,3-1,5 г/дм³). Доказано, что ПАВ проявляют смачивающие свойства (краевой угол смачивания ПАВ при концентрации 5,0 г/дм³ лежит в диапазоне 27-29 град). Рассчитанный гидрофильно-липофильный баланс (ГЛБ) находится в диапазоне 12,6-12,8, что

позволяет предположить наличие эмульгирующих свойств. Обнаружено, что пенообразующая способность разработанных продуктов невысокая: кратность пены 0,5-0,7. Полученные результаты определения размеров частиц ПАВ позволяют предположить, что последние занимают промежуточное положение между нано- и микрочастицами.

В настоящее время ПАВ широко распространены и находят применение во многих отраслях промышленности, в особенности фармацевтической и косметической промышленностях [1,2].

ПАВ - химические соединения, которые, концентрируясь на поверхности раздела термодинамических фаз, вызывают снижение поверхностного натяжения. ПАВ имеет амфифильную структуру, которая состоит из лиофобной части и лиофильной. В зависимости от природы гидрофильной группы ПАВ делятся на 2 группы: ионогенные и неионогенные. Ионогенная группа ПАВ, в свою очередь, делится на: катионактивные (кПАВ), анионактивные (аПАВ) и амфотерные.

При получении ПАВ сырье делится на 2 класса:

- нефтехимическое;
- олеохимическое (природное) растительные масла, жирные кислоты и их продукты гидрирования [3].

На сегодняшний день наиболее широко применяется именно 2 класс сырья, так как природное сырье является недорогим и возобновляемым. В европейских странах около 70% используемого сырья при получении ПАВ природного происхождения. В России же основным сырьем при получении ПАВ остается нефтехимическое.

Основными видами сырья природного происхождения для получения ПАВ являются жирные кислоты, метиловые эфиры жирных кислот и глицерин. На качество синтезируемого ПАВ влияет жирно-кислотный состав применяемых жиров и кислот.

Цель данной работы — получение нПАВ из жирных кислот рапсового и подсолнечного масел и этаноламинов, а также исследование его вещества для свойств.

Исходные синтеза неионогенного ПАВ: моноэтаноламин (МЭА) и диэтаноламин (ДЭА), а также жирные кислоты рапсового и подсолнечного масел (ЖКРМ и ЖКПМ) [4,5].

Состав жирных кислот данных масел приведены в таблице 1.

Таблица 1 - Состав ЖКРМ и ЖКПМ

Масло	Олеиновая	Линолевая	Линоленовая	Стеариновая	Пальмитино-
	кислота, %	кислота, %	кислота, %	кислота, %	вая кислота, %
Рапсовое	60,7	20,4	9,7	1,9	4,2
Подсолнечное	42,5	46	1	5	6,5

Жирные кислоты получают гидролизом соответствующих масел с последующей очисткой дистилляцией.

При эквимольном соотношении реагентов при применении МЭА реакция идет по схеме:

 $RCOOH + NH_2(C_2H_4OH) \rightarrow RC(O) - NH(CH_2CH_2OH) + H_2O, (1)$ где R – остаток жирной кислоты.

При использовании ДЭА реакция идет по следующей схеме: $RCOOH + NH(CH_2CH_2OH)_2 \rightarrow R-C(O)-N(CH_2CH_2OH)_2+H_2O$, (2) где R – остаток жирной кислоты.

Получено 2 вида моноэтаноламидов и 2 вида диэтаноламидов:

- моноэтаноламид на ЖКРМ КРМА;
- моноэтаноламид на ЖКПМ КПМА;
- диэтаноламид на ЖКРМ КРДА;
- -диэтаноламид на ЖКПМ КПДА.

Ход процесса синтеза контролировали по изменению кислотного числа (К.Ч.).

К.Ч. синтезированных МЭА и ДЭА в конце процесса представлены в таблице 2.

Таблица 2

	KPMA	КПМА	КРДА	КПДА
К.Ч., мг КОН/г	5,2-5,3	5,2-5,3	4,5	5,5-5,7

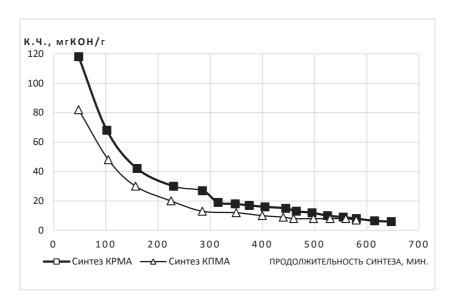


Рис. 1 - Изменение К.Ч. в процессе получения алканоламидов.

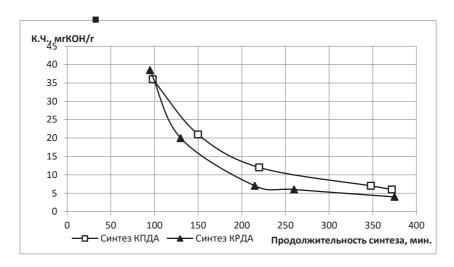


Рис. 2 - Изменение К.Ч. в процессе получения диэтаноламидов.

Синтезированные продукты при комнатной температуре, а именно, КРДА, КПДА представляют собой вязкую массу темно-коричневого цвета. КПМА — мазеобразный продукт коричневого цвета со специфичным запахом. КРМА представляет собой вязкий продукт. Продолжительность процессов получения КРМА и КПМА составила 11-12 ч, а КРДА и КПДА 7,0-7,5 ч.

Данные ИК-спектроскопии подтвердили наличие характерных функциональных групп в диэтаноламидах и алканоламидах: -OH, - CH₂-; N-H, C=O. ИК-спектры характеризуются также «первой» и «второй» амидной полосой.

Синтезированные нПАВ легко растворяются в ацетоне, ксилоле и диметилформамиде. Содержание сухого остатка 95,4 - 96,8%.

В работе были исследованы коллоидно-химические свойства полученных ПАВ. Рассматривались следующие свойства: поверхностное натяжение, пенообразующая, смачивающая способности, ККМ, ГЛБ и размер частиц ПАВ. В качестве ПАВ сравнения применялся Level A – нПАВ производства «Lowenstin».

Графики изменения поверхностного натяжения, синтезированных ДЭА приведены на рис. 3.

Характер кривых поверхностного натяжения моноэтаноламидов идентичен кривым на рис. 3.

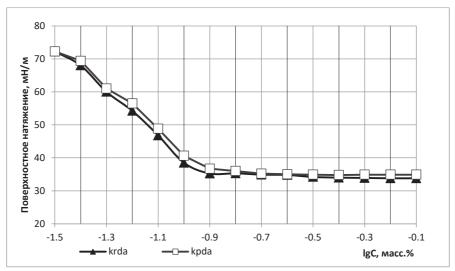


Рис. 3 - Изменение поверхностного натяжения диэтаноламидов.

Важнейшим свойством коллоидных ПАВ является ККМ, при которой резко изменяются свойства растворов. Точка ККМ КРДА, КПДА составила 0.13-0.15% (lgC=-0.90).

Также были определены средние размеры частиц до (при концентрации 0.5-1.0г/дм 3) и выше (при концентрации выше 2.0 г/дм 3) точки ККМ. Исходя из результатов эксперимента, размер частиц до ККМ находится в интервале 121.9-122.3 нм, а выше ККМ - в пределах 222.5-222.8 нм. Полученные данные позволяют предположить, что синтезированные продукты занимают промежуточное положение между нано- и микрочастицами.

Смачивающая способность синтезированных ПАВ оценивалась по отношению к желатиновой поверхности (гидрофильной) (таблица 4). Все ПАВ проявили себя как отличные смачиватели. После ККМ не изменяются ни поверхностное натяжение, ни углы смачивания.

Пенообразующая способность у синтезированных диэтаноламидов и алканоламидов при комнатной температуре невысокая. При повышении температуры до $40-60^{0}$ С пенообразование незначительно, но повышается. Кратность пены для всех синтезированных продуктов: 0,5-0,7.

Рассчитаны значения ГЛБ для синтезированных нПАВ, которые составили 12,6-12,8, что позволяет констатировать: полученные нПАВ могут применяться в качестве эмульгаторов «масло в воде».

Известно, что растворы нПАВ при нагревании в определенном температурном интервале начинают сильно рассеивать свет. Они становятся «мутными». Температура точки помутнения исследуемых ПАВ лежала в диапазоне $80.0\,^{\circ}$ С.

Результаты исследований поверхностно-активных свойств, синтезированных ПАВ представлены в таблице 3.

Таблица 3 - Поверхностно-активные свойства нПАВ

1 аолица 3 - 110верхностно-активные своиства н11АВ							
Показатель	КРМА	КПМА	Level A				
	КРДА	КПДА					
Внешний вид	Жидкая смолообразная		Прозрачная				
	масса темно-		жидкость				
	коричневого цвета						
Внешний вид водного раствора	Мутная жидкость		Прозрачная				
концентрации 10 г/дм3		жидкость					
Массовая доля основного вещества, %	95,9-96,2	95,8-96,	91,0				
не менее							
ККМ, г/дм ³	1,3-1,4	1,3-1,5	1,6				
ГЛБ	12,6-12,8	12,6-12,8	-				
Температура точки помутнения, ⁰ С	80-81	80-82	92				
Кратность пены	0,5-0,7	0,5-0,7	0,6				
Поверхностное натяжение водного	38,9-39,0	40,9-41,1	42,5				
раствора концентрацией $1,0$ г/дм ³ , σ , мН/м							
Краевой угол смачивания водного	27-29	27-28	29				
раствора концентрацией 5,0 г/дм 3 , θ , град							
Средний размер частиц ПАВ:	121,9-122,1	122,0-122,3	-				
до ККМ, нм и после ККМ, нм	222,5-222,6	222,6-222,8					
рН водного раствора	7-	7-8					

Таким образом, из полученных результатов можно сделать вывод, что синтезированные нПАВ обладают поверхностно-активными свойствами: эмульгирующими, смачивающими и невысокими пенообразующими.

Список использованных источников

- 1. Кучма М.М. Поверхностно-активные вещества в дорожном строительстве / М.М. Кучма.- М.: Транспорт, 1980 191 с.
- 2. Плетнев, М.Ю. Поверхностно-активные вещества (Справочник)/ М.Ю. Плетнев, Е.Н. Колесникова, Н.А. Глухарева, Ю.Н. Козырева. –М.: ООО «Фирма Клавель», 2002.-786с.
- 3.Ланге, К.Р. Поверхностно-активные вещества: синтез, свойства, анализ, применение / К. Р. Ланге; под науч. Ред. Л. П. Зайченко. Спб.: Профессия, 2004. 240 с.
- 4. Лутфуллина Г. Г. Исследования характеристик свойств синтезированных диэтаноламидов) / Г. Г. Лутфуллина // Вестник технологического университета. Казань. 2011. –С. 44-48.

5. Лутфуллина Г.Г. Энергоресурсосберегающие технологии получения кожевенного и мехового полуфабриката с применением разработанных аминосодержащих пав и плазменной обработки/Г.Г. Лутфуллина//Автореферат дис.докт. техн. наук, 2012. — 36с.

УДК 661.183:658.567.1

Е.А. Зайцева, И.С. Еремин

Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина

СОРБЦИОННЫЕ СВОЙСТВА МАТЕРИАЛОВ, ИЗГОТОВЛЕННЫХ ИЗ ОТХОДОВ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА

Аннотация. Решением проблемы переработки отходов агропромышленного комплекса может стать производство сорбирующих материалов на их основе. В работе изучены сорбционные свойства некоторых крупнотоннажных растительных отходов агропромышленного комплекса Республики Беларусь и Российской Федерации: лузги гречихи, стеблей кукурузы, жома сахарной свеклы. Авторами проведена термохимическая модификация растительных отходов. Получены данные изменения сорбционной емкости модифицированных материалов по нефти и нефтепродуктам. Установлено значительное увеличение их сорбционной емкости, что свидетельствует об эффективности разработанного метода модификации. Полученные авторами материалы могут быть использованы для ликвидации разливов нефти.

Агропромышленный комплекс Республики Беларусь и Российской Федерации — важная составляющая экономики. Развитие аграрного бизнеса, повышение экономической эффективности, конкурентоспособности и качества сельскохозяйственной продукции и продуктов питания являются на сегодняшний день приоритетными направлениями сотрудничества для обоих государств. Продвижение данного сектора во многом будет определять уровень социально-экономического развития в условиях современных политических и социальных вызовов. Однако необходимо учитывать иные факторы развития отрасли, а именно ее «побочные продукты», которые