И. И. Наркевич, д-р физ.-мат. наук, проф.; Е. В. Фарафонтова, канд. физ.-мат., наук доц.; А. А. Кулеш, студ. (БГТУ, г. Минск)

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СХОДИМОСТИ ИТЕРАЦИОННОЙ ПРОЦЕДУРЫ ПРИ РЕШЕНИИ СИСТЕМЫ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ДЛЯ ГЕТЕРОГЕННОЙ СИСТЕМЫ: КРИСТАЛЛИЧЕСКАЯ НАНОЧАСТИЦА – ГАЗООБРАЗНАЯ СРЕДА

Ранее [1] была изложена методика решения полной системы интегральных и алгебраических уравнений для гетерогенной системы, содержащей кристаллическую наночастицу внутри флюидной среды, которая разработана в рамках двухуровневого статистического метода [2]. В двухуровневом статистическом методе используются потенциалы φ средних сил [3], которые в силу неоднородности гнтерогенной системы являются функционалами от искомых полей чисел заполнения n_p ячеек, принадлежащих координационным сферам с номерами p(p = 1, 2, ..., P) относительно центра сферической наночастицы.

Для сферической наночастицы поле плотности зависит только от расстояния r_p до центра наночастицы. Поэтому радиальный профиль чисел заполнения $n(r_p)$ рассчитывается с помощью аппроксимирующей трехпараметрической функции, содержащей гиперболический тангенс и два вариационных параметра a и к [2], т. е.

$$n(r_p) = a - (a - n_{\infty}) \operatorname{th}(\kappa \Delta r_p)$$

Полная замкнутая система интегральных и алгебраических уравнений для гетерогенной системы решалась численно методом итераций с помощью разработанной компьютерной программы в пакете Mathcad. Проверка правильности и единственности полученных решений при заданном радиальном профиле плотности была выполнена в результате исследования сходимости разработанной итерационной процедуры.

Сходимость итерационной процедуры к искомому решению системы интегральных уравнений исследована при параметрах $\kappa = 6$ и a = 0,045, которые задают радиальный профиль чисел заполнения n_p в газовой среде с кристаллической наночастицей, содержащей 15 координационных сфер. Для этого задавался пробный профиль среднеквадратичных отклонений σ_p^{np} , соответствующий макроскопическому кристаллу со значением $\sigma_p^{np} = \text{const}$, которое отличалось от предполагаемого либо ранее найденного решения для ячейки в центре сферической наночастицы. Проведены две серии итерационных расчетов. В первом случае $\sigma_p^{\text{пр}} = 0,132$ ($b_p^{\text{пр}} = 0,170$ – параметр, определяющий область локализации унарной функции распределения в ячейке с номером *p*), что меньше, чем найденное ранее решение для центральной ячейки ($\sigma_0 = 0,149, b_0 = 0,192$). Во втором случае $\sigma_p^{\text{пр}} = 0,183$ ($b_p^{\text{пр}} = 0,220$), что больше, чем найденное ранее решение для центральной ячейки ($\sigma_0 = 0,149, b_0 = 0,192$). Результаты проведенных итерационных решений системы интегральных уравнений приведены на рис. 1 и 2.

Рисунок 1 – Радиальный профиль чисел заполнения n_p для наночастицы и адсорбционного слоя, а также зависимости среднеквадратичных отклонений σ_p молекул от номеров *p* координационных сфер для итераций с номерами *i* = 0, 2–6, 10–16 при $\sigma_p^{np} = 0,132$

Рисунок 2 – Радиальный профиль чисел заполнения n_p для наночастицы и адсорбционного слоя, а также зависимости среднеквадратичных отклонений σ_p молекул от номеров *p* координационных сфер для итераций с номерами i = 0, 2–6, 10–16 при $\sigma_p^{np} = 0,183$

Из сравнения профилей на рис. 1 и рис. 2 видно, что как в первом, так и во втором случаях профили среднеквадратичных отклонений σ_p постепенно деформируются и приближаются к одному и тому же решению, которое практически реализуется уже после 10-ой итерации. Это наглядно следует из анализа профилей, изображенных на рис. 3, где итерационные кривые для первого случая пронумерованы числами *i*^{*}, а для второго случая – числами *i*.

Рисунок 3 – Радиальный профиль чисел заполнения *n_p* для наночастицы и адсорбционного слоя, а также зависимости среднеквадратичных отклонений σ_{*p*} молекул от номеров *p* координационных сфер для итераций с номерами *i* = *i*^{*} = 0, 3, 5, 10–16

В заключение отметим, что здесь проведены расчеты для наночастицы, содержащей 15 координационных сфер и имеющей в случае аргона радиус $r_{15} = 1,49$ нм.

ЛИТЕРАТУРА

1. Наркевич И. И., Фарафонтова Е. В., Кулеш А. А., Рогач А. А. Решение модифицированного интегрального уравнения для потенциалов средних сил и расчет параметров фазовых переходов в гетерогенных системах, содержащих кристаллические наночастицы // Труды БГТУ. Сер. 3, Физ.-мат. науки и информатика. Минск: БГТУ, 2020. № 2 (236). С. 48–56.

2. Наркевич И. И. Двухуровневый статистический метод описания неоднородных систем. Нордерштедт: LAP LAMBERT Academic Publishing RU, 2019. 114 с.

3. Ротт Л. А. Статистическая теория молекулярных систем. М.: Наука, 1979. – 280 с.