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Abstract. 

The lattice system with competing interactions (attractive between nearest 
neighbors and repulsive between fourth order neighbors) on a square lattice is 
studied. It is shown that the competing interactions lead to the order-disorder phase 
transitions. The possibility of existence of two types of ordered phases in the system 
is established and investigated the conditions for the occurrence of each of these 
phases. The geometric order parameter for localizing the structural phase transition 
points is proposed. With its help, the critical value of the interaction parameter was 
established, and the dependence of the critical temperature of the model versus the 
ratio of intensities of competing interactions was studied. The Monte Carlo 
simulation data are compared with the results of the quasi-chemical approximation. It 
is shown that the quasi-chemical approximation allows one to determine the 
thermodynamic properties of the model with high accuracy. 

1 The model and its order parameter 

The model which is considered in this article is the lattice fluid consisting of n 
particles on the square lattice containing N lattice sites. Each of the lattice sites can be 
occupied by no more than one particle. Particles occupying the nearest lattice sites 
and sites that are fourth-order neighbors interact with each other. The energies of 
these interactions are equal to J1 and J4, respectively. The second, third, fifth and 
more distant neighbors are considered as non-interacting. 

In the future, we will assume that J1<0, and J4>0 
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where J>0 is the energy parameter of the model and 
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This choice of interaction energies corresponds to the attraction of the nearest 
neighbors and the repulsion of the fourth neighbors.  

The simulation of the equilibrium characteristics of the system under 
consideration in the grand canonical ensemble using the Monte Carlo method is 
performed within the framework of the Metropolis algorithm [1]. For simulation, we 
used a lattice containing 212 lattice sites with periodic boundary conditions. The total 
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length of the simulation procedure consisted of 70 000 steps of the Monte Carlo 
algorithm (MCS). The first 20 000 MCSs were used to equilibrate the system and not 
taken into account at subsequent averaging. 

A MC simulation has shown that two different types of ordered phases are 
formed in the system at low temperatures (below the critical temperature Tc). The 
both types of ordered phases are shown in Figure 1. 

In contrast, the similar system considered earlier with the interaction of the 
nearest and third neighbors [2], the type of arising ordered phase depends on the ratio 
of the intensities of the interparticle interactions, i.e. from the parameter J*. 

Since the total internal energy of the ordered phase which is presented on the 
right panel of the Fig. 1 is zero, the threshold value of the parameter J* can be 
determined from the following relation 

 + = − + = , (3) 

and equal J*=1.5. 
At J*<1.5, the ordered phase is an alternation of double empty and double 

filled vertical or horizontal stripes. At the same time, for J*>1.5 the system has the 
so-called “chess” order. Thus, for the system under consideration, there is no 
degeneracy of the basic energy state observed earlier [2]. 

The MC simulation showed that the change of the type of ordered phase does 
not occur abruptly. At J*≈1.5 the system breaks up on domains with different types 
of the ordered structures (see Fig. 2). This behavior of the system can be explained by 
the influence of entropy effects on the form of its ordered phase. 

For describing the both types of ordered phases, the initial square lattice was 
divided into a system of 16 identical sublattices with the spacing 4a, where a is the 
lattice spacing of the initial lattice. In the case of complete ordering of the system at the 
lattice concentration c = 0.5 and low temperatures, eight sublattices are completely filled 
(p-sublattice) and eight sublattices are completely vacant (v-sublattice). After 
determining the average particle concentration on each of the introduced sublattices, the 
order parameter of the system δc can be determined in accordance with the relation 

where cmax and сmin are the particles concentrations on the most and least filled 
sublattices, respectively. 

 

At the same time, it should be noted that to describe the “chess” order, a more 
simple approach can be proposed. In this case the initial lattice is divided into only two 
sublattices with the spacing a√2. These sublattices can be named as even and odd 
lattices, respectively. Such terminology is because the sum of the coordinates of the 
lattice site on the initial lattice is an even number in one case and an odd number in the 
other. After then, the corresponding sublattice concentrations c2k and c2k+1 can be 
determined, and on their basis the order parameter δc can be calculated as 
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Figure 1. The final screenshot of the system at chemical potential μ = 10J (concentration c = 0.5), 
J / kBTc = 2.0. The left and right panels of the figure correspond to the J* = 1.2 and 2.5, respectively  



 

Figure 2. The final screenshot of the system at μ = 10J (c = 0.5), J / kBTc = 10.0 and J* = 1.52 
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The MC simulation shows (see Fig. 3) that in the case of the system with 
J* = 3.0, the order parameter increases sharply at J / kBTc = 0.266 for the chemical 
potential μ = 10J that corresponds to the system with the average concentration 
c = 0.5. 

Such an increase of the order parameter corresponds to the order-disorder phase 
transition. The value 0.266 can be interpreted as a critical parameter of the model, by 
analogy with the SALR system with the interaction of the first and third neighbors [2, 
3] and the systems with repulsion interaction between the nearest neighbors [4, 5]. 

In a similar way, critical temperature of the system can also be determined for 
other values of the parameter J*, which corresponds to various types of the ordering. 
Fig. 4 represents the dependence of the dimensionless critical temperature of the 
model on the parameter J*. This dependence is approximately linear for a fixed type 
of ordering of the system and has a pronounced kink at J* ≈ 1.5. This point, as noted 
above, corresponds to the change in the type of the ordered state of the system. 

It follows from the analysis of the left panel of the Fig. 1 that the second way to 
determining the order parameter is not universal. The order parameter according to the 
relation (5) is equal to 0 even in the case of complete ordered state, if this state 
corresponds to the alternation of double empty and double filled stripes. 

Nevertheless, the presence of two different approaches to the description of the 
ordered states allows not only comparing their results, but also makes it possible to 
control the change of the type of the ordered phase in the system.  

Another way to control of the type of the ordered phase is using the matrix of 
order parameters [2] 
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where ci(j) is the concentration of particles on the sublattice i(j). 
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This is a symmetric matrix (16×16) with the diagonal elements equal to zero 
and 120 independent nondiagonal elements equal to one or zero for the ordered 
structures. In this case, it is possible to distinguish the ordered phases by the structure 
of this matrix. However, this approach is rather cumbersome because of the size of 
the matrix of order parameters. 

The order parameter characterizes the strength of the ordering of the ordered 
state and is equal to zero in a disordered state. The total lattice concentration c and 
the sublattice concentrations cp and cv satisfy the expressions (the subscripts 1 and 0 
are related to particles and vacancies, correspondently) 

 

 , (8) 

2 The critical parameter of the system 
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Figure 3. The order parameter versus the inverse temperature at μ = 10J (с = 0,5) and J*= 3 



 

Figure 4. The dimensionless critical temperature of the model kBTc / J versus the parameter J* 
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3 The quasi-chemical approximation 

The relatively simple quasi-chemical approximation (QChA) to estimate the 
equilibrium parameters of lattice systems with SALR interparticle interactions was 
proposed in [2].  

The main idea of this approach is to present the free energy of initial system F 
as the sum of the free energy F(r) of the reference system (which is similar to the 
initial one) and the diagrammatic part F(d) of the free energy [5, 6]:  

 ( ) ( )= +rF F F d . (10) 
The reference system is characterized by the mean potentials φj

β(ni
α) describing 

the interaction of a particle (ni
α = 1) or vacancy (ni

α = 0) on site i of the α-sublattice 
with the site j of the β-sublattice. The free energy of the system have not to depend on 
the choice of the mean potentials since equation (10) is an identity. This makes it 
possible to determine the mean potential from the minimal susceptibility principle [7] 

 0α
∂

=
∂ϕi

F . (11) 

Obviously, the free energy is the function of the concentration of particles on 
the sublattices cp(v) or the function of the average concentration of particles on the 
lattice c and the order parameter δc. The latter can be determined from the extremity 
condition 

 0∂
=

∂δ
F
c

, (12) 

which is equivalent to the requirement that the chemical potentials on all the 
sublattices are equal. 

The quasi-chemical approximation corresponds to taking into account in the 
diagram part of the free energy the contributions only of the two-vertex graphs. In 
this case [2], the free energy of the system can be represented in the following form  
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Where the coordination numbers z1 = 4 and z4 = 8 in the case of square lattice 
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All the thermodynamic characteristics can be investigated on the basis of 
equation (13) for the free energy. For example, the chemical potential μ, the 
thermodynamic factor χТ and the correlation function gk(1;1) for two nearest neighbors 
(k = 1) and neighbors of kth order can be determine as [7] 

 ( )∂ β⎛ ⎞βμ = ⎜ ⎟∂⎝ ⎠T

F
c

, (18) 
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4 The order parameter and phase diagram of the model 

The most important structural feature, which describes the ordered state of the 
model is the order parameter. The comparisons of the calculation and simulation 
results for the order parameter are shown in Fig. 5 for the case J* = 3. 

As follows from Figure 5, the QChA reproduces the MC simulation results 
only qualitatively. Nevertheless, the introduced order parameter can be used to 
construct the phase diagram of the model, which is represented in Fig. 6.  

In general, it can be noted that the constructed diagram is similar to the 
diagram for the lattice fluid with the attraction between the nearest neighbors and 
repulsion between the next-next-nearest neighbors [2]. Based on Figure 5, we should 
expect that the true phase diagram would be somewhat narrower than the results of 
the QChA. 

It can also be noted that the critical temperature of the model in the framework 
of the QChA is overestimated by approximately 38% as compared to the MCS data 
((Jβc)QchA = 0.192). 



 

 

Figure 5. The order parameter versus concentration at J* = 3.0, βJ = 0.5 (1) and 0.4 (2). The solid lines 
represent the QChA results, the circles and squares are the MC simulation data 



 

Figure 6. The order-disorder phase transition curve in the QChA at J*= 3 
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5 The thermodynamic and structural features of the model 

The chemical potential isotherms are shown in Fig. 7. The ordered phase exists 
at temperatures below critical (βJ = 0.50; 0.40 and 0.30) where a steep increase of the 
chemical potential is observed. 

The comparison of the QChA and MCS data is also shown in Fig. 7. From this 
comparison, it follows that the results of both methods are in a good quantitative 
agreement. In fact, differences in the chemical potential occur only in the region of 
the ordered phase in the system. 

In accordance with expression (18), the increase of the chemical potential, 
which was noted above, leads to the sharp increase of the thermodynamic factor or, 
correspondingly, to the number of particles fluctuation decrease  
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( )
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T
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This means that in the ordered state, the fluctuations are suppressed and the 
system becomes more rigid. Obviously, the minimum of fluctuations is achieved in 
the fully ordered state corresponding to the concentration of 0.5 on the square lattice. 
In turn, the thermodynamic factor in this conditions will be maximal. 

In QChA, the chemical potential and the thermodynamic factor were calculated 
by numerical differentiating of the free energy expression (13). However, such a 
differentiation of the chemical potential extracted from MC simulations suffers from 
low precession. In this case, the thermodynamic factor can be calculated as the value 
inversely proportional to the mean square concentration fluctuations in accordance 
with Eq. (21). 

It can also be noted that the parameter χТ plays an important role in the 
description of diffusion processes in lattice fluids [8]. In particular, it establishes the 
relationship between the chemical (Dch) and kinetic (DJ) diffusion coefficients 
 

. (21) 

ch = χ

ch JD с D с∇ = ∇βμ . (23)

, (22) 



 

 

Figure 7. The chemical potential (in units of the nearest neighbor interaction energy J) versus concentration 
at βJ = 0.50 (1); 0.40 (2); 0.30 (3); 0.20 (4) и 0.10 (5). The solid lines represent the QChA results, the symbols are 

the MC simulation data. Each group of curves is shifted down by 10 units along the μ axis with respect to the 
previous one for better visibility. The upshifted curve (3) is characterized by μ/J = 10 at c = 0.5, and this point is 
the same for all the temperatures. Thus, the curves (1) and (2) are shifted down from their true position, while (4) 

and (5) are shifted up.  



 

Figure 8. The thermodynamic factor versus concentration at βJ = 0.50 (1, squares), 0.40 (2, circles) and 
0.30 (5, triangles). The solid lines represent the QChA results, the symbols are the MC simulation data. The 

designation of the curves is the same as in Fig. 7. 
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The order parameter and the thermodynamic factor describe the global ordering 
of the system. In turn, the short range ordering can be described by the correlation 
function (20). Physically, the correlation function is the ratio of the probability of two 
nearest (or kth order) neighbor lattice sites to be occupied by particles to the same 
probability for the case of the Langmuir (non-interacting) lattice gases c2.  

The correlation functions for the nearest and fourth order neighbors are shown 
in Figs. 9 and 10, respectively. 

The global ordering of the system also manifests itself at the local level, as for 
the lattice fluid with the interaction of the nearest and next-next-nearest neighbors. At 
temperatures below critical, the probability to find the two nearest neighbor sites and 
the two fourth order neighbor sites occupied by particles becomes very low. If the 
system is completely ordered, any lattice site occupied by a particle has neither the 
nearest nor the fourth-order neighbor as it is evident from the right panel of Fig. 1. 
Obviously, with the temperature increase, the distinction from the Langmuir lattice 
gas decreases. 

In general, the results of QChA and MC simulation data satisfactorily 
correspond to each other in the disordered phase. At the same time, they differ 
significantly in the region of ordered phases due to problems associated with 
determining the order parameter and the critical temperature in the quasi-chemical 
approximation. 

The most significant differences arise when considering correlations in the 
filling of the nearest lattice sites when noticeable qualitative differences between the 
results of the analytical approximation and the MC simulation data exist. The 
simulation results indicate the nonmonotonic dependence of the correlation functions 
on the concentration and the presence of the minimum of this function around the 
concentration 0.5. These features are not observed in the quasi-chemical 
approximation. 



 

Figure 9. The correlation functions of the nearest neighbors versus concentration at βJ = 0.50 (1, squares), 
0.30 (3, triangulars) and 0.10 (5, diamonds). The solid lines represent the QChA results, the symbols are the MC 

simulation data. 



 

Figure 10. The correlation functions of the fourth order neighbors versus concentration at βJ = 0.50 (1, square), 
0.30 (3, triangular) and 0.10 (5, diamond). The solid lines represent the QChA results, the symbols are the MC 

simulation data. 
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Conclusion 

The lattice system with attractive interaction between the nearest neighbors and 
repulsive interaction between the fourth order neighbors has been studied. 

It is shown that the competing interactions lead to the order-disorder phase 
transitions. The structure of the ordered phase depends on the value of the parameter 
J*, which is determined as the ratio of the intensities of repulsion and attraction 
interactions between particles. At J* < 1.5, the ordered phase is the set of alternating 
double empty and double filled stripes. These stripes can be arranged vertically or 
horizontally. At J* > 1.5, the vacant and filled lattice sites are staggered.  

The separation of the initial lattice into a system of 16 sublattices was proposed 
to describe both types of the ordered phases. In the ordered phase, a half of these 
sublattices are predominantly vacant and the other half are predominantly filled. This 
gives the possibility to determine the order parameter of the model δc as the 
difference between the particle concentrations on the sublattices. 

Subsequently, the order parameter is used as the indicator of the structural 
phase transitions. It was found that the dependence of the critical temperature kBTc / J 
on the parameter J* is linear both for J* < 1.5 and for J* > 1.5, but has a kink at 
J* ≈ 1.5. 

The order parameter, chemical potential, thermodynamic factor and correlation 
functions are determined both in the QChA and in the Monte Carlo simulation. As 
before [2, 3] the order parameter of the system δc is determined in the QChA with 
significant errors. This leads to errors in determining the critical temperature of the 
system and to difficulties in studying the structural properties of the model in the 
framework of the QChA at low temperatures. At the same time, the thermodynamic 
properties of the system such as, for example, the chemical potential isotherms, are 
determined in this approximation with high accuracy. 
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