П.С. Родионова, студ.; П.Б. Кубрак, доц., канд. хим. наук; В.В. Яскельчик, ассист. (БГТУ, Минск)

ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛИРОВАНИЕ ТИТАНА В ГЛИЦЕРИНОВЫХ РАСТВОРАХ МИНЕРАЛЬНЫХ КИСЛОТ

Электрохимическое полирование (ЭХП) металлов заключается в анодной обработке, В результате которой происходит ИΧ электрохимическое растворение поверхностного слоя металла и удаление дефектного слоя, образовавшегося при проводившихся ранее механических или термических операциях. Формируется новый поверхностный слой c меньшей высотой микронеровностей, рельефом сглаженным поверхности, содержащий не инородных включений, скрытых дефектов.

Электрохимическое полирование применяют для обработки труб, пружин, турбинных лопаток, ряда деталей, работающих в условиях трения и знакопеременных нагрузок, для декоративной отделки ювелирных украшений. Электрохимическое полирование незаменимо при обработке полупроводников в связи с тем, что позволяет получить поверхность со стабильными электрофизическими характеристиками [1].

Электрохимическое полирование находит распространение в таких технологических процессах, как хромирование автомобильных дисков и производство мебели, нанесение любых покрытий на металлы и автомобильный тюнинг, восстановление деталей методом осталивания и подготовка заготовок к гальваническим процессам [2].

Электролиты для полирования титана содержат: пассиватор – сульфаты, нитраты, хроматы; активатор – фториды, оксалаты; а также различные добавки органических соединений, играющие роль ингибиторов травления.

Состав и режим типичного электролита полирования следующие: $CrO_3 - 500 \ r/\pi$; $HF_{\text{конц}} - 160 \ \text{мл/л}$; Температура - 16– $21 \ ^{\circ}\text{C}$; $i_a - 20$ – $50 \ \text{A/дм}^2$; U - 5– $7 \ \text{B}$ [3]. Однако такой электролит является высоконцентрированным на основные компоненты, тем самым представляя из себя большую экологическую опасность. Для решения этой проблемы предлагается применение электролита на основе глицерина в качестве растворителя, а также малых количеств плавиковой кислоты и азотнокислого аммония. Исследования качественных характеристик полирования титана проводили с использованием электролитов, представленных в таблице 1.

Таблица 1 – Составы исследуемых электролитов

	Моляльность, моль/кг растворителя(глицерин)									
Компоненты	1	2	3	4	5	6	7	8	9	10
НF, в т.ч. НF	5	5	5	5	5	8	8	5	5	5
и Н2О	7,5	7,5	7,5	7,5	7,5	12	12	7,5	7,5	7,5
NH ₄ NO ₃	-	0,16	0,62	0,78	1,56	1,56	1,56	-	-	-
C ₁₂ H ₂₅ SO ₄ Na	-	-	-	-	-	-	9 · 10-5	-	-	-
C ₁₆ H ₃ N(CH ₃) ₂	-	1	1	-	1	ı	-	5 · 10 ⁻⁴	5 · 10 ⁻⁴	5 · 10-4
Sr(NO ₃) ₂	-	-	-	-	-	-	-	-	0,11	0,22
Компоненты	Моляльность, моль/кг растворителя(глицерин)									
	11	12	13	14	15	16	17	18	19	20
HF, в т.ч. HF	5	12	12	12	12	12	12	12	12	12
и Н2О	7,5	18	18	18	18	18	18	18	18	18
NH ₄ NO ₃	-	-	0,72	0,78	0,94	1,09	1,25	1,41	1,56	1,72
C ₁₂ H ₂₅ SO ₄ Na	-	-	-	-	-	-	-	-	-	-
C ₁₆ H ₃ N(CH ₃) ₂	1.10	-	-	-	-	-	-	-	-	-
Sr(NO ₃) ₂	0,22	-	-	-	-	-	-	-	-	-

Методом апробации установлено, что наилучшими качественными характеристиками полирования обладает титан, обработанный в электролитах № 12-20. Данное соотношение травящего вещества и растворителя является обоснованными с точки зрения экологичности и работоспособности.

Для снижения активного растворения добавлялся азотнокислый аммоний в качестве пассиватора. Окончательный выбор концентраций были выбраны после проведения потенциостатических исследований при скорости развёртки 0,01 В/с и с шагом 0,01 В.

Анодные поляризационные кривые для электролитов, содержащих азотнокислый аммоний сдвигаются в область меньших анодных токов, что указывает на наличие пассивации и позволяет проводить процесс полирования при меньших токовых нагрузках. В электролите №7 наблюдается возрастающий линейный участок, позволяющий увеличивать скорость полирования титана в данном электролите.

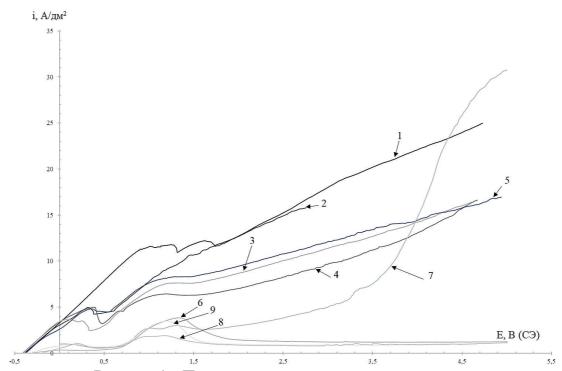


Рисунок 1 — Потенциостатические анодные кривые для электролитов состава HF, в том числе HF — 12 моль/кг, $H_2O=18$ моль/кг: 1) $NH_4NO_3=0$ моль/кг; 2) $NH_4NO_3=0,72$ моль/кг; 3) $NH_4NO_3=0,78$ моль/кг; 4) $NH_4NO_3=0,94$ моль/кг; 5) $NH_4NO_3=1,09$ моль/кг; 6) $NH_4NO_3=1,25$ моль/кг; 7) $NH_4NO_3=1,41$ моль/кг; 8) $NH_4NO_3=1,56$ моль/кг; 9) $NH_4NO_3=1,72$ моль/кг

В данных электролитах было проведено полирования титана при токовых нагрузках 5, 10, 15 и 20 А/дм² в течении 3, 5 и 10 минут с изучением влияния составов, токовых нагрузок и времени электролиза на качественные показатели полирования (блеск, съём и шероховатость). Съём металла определяли гравиметрически на аналитических весах, блеск определяли на блескомере относительно серебряного зеркала, шероховатость определяли на профилограф-профилометре. Результаты исследований в данном электролите приведены в таблице 2.

Таблица 2 – Результаты исследования влияния условий электролиза

Плотность тока, А/дм ²	Время электролиза, сек	Съём, мкм	Блеск, %	Ra, мкм	Rz, мкм	Rmax, мкм
1	2	3	4	5	6	7
5	180	3,67	2,7	0,621	2,952	4,735
5	300	5,58	2,9	2,02	6,116	11,003
5	600	18,2	10,8	2,249	8,11	13,629
10	180	7,34	7,4	0,281	0,618	1,559
10	300	10,1	10,1	0,615	2,23	3,416
10	600	32,15	12,8	0,938	1,962	5,852
15	180	11,87	6,8	0,589	2,257	5,25

Продолжение таблицы 2

1	2	3	4	5	6	7
15	300	13,88	28,8	0,363	1,148	2,225
15	600	50,66	6,2	1,051	4,176	6,444
20	180	13,37	5,3	0,336	1,37	2,173
20	300	26,33	10,1	0,373	1,579	2,486
20	600	112,1	9,3	0,746	1,635	3,905

Таким образом, наилучший результат полирования достигался в электролите следующего состава: HF, в том числе HF – 12 моль/кг, H_2O – 18 моль/кг; NH_4NO_3 – 1,41 моль/кг в стационарном токовом режиме при плотности тока 15 $A/дм^2$ и времени электролиза 5 минут. Полирование в таких условиях способствовало выравниванию, появлению интенсивного блеска и относительно меньшему съёму в сравнении с используемыми электролитами в нынешнее время [1]. Такой электролит является намного более разбавленным по агрессивным компонентам, тем самым способствует снижению экологической опасности технологического процесса полирования титана.

ЛИТЕРАТУРА

- 1. Гальванотехника: Справ. изд / Под общ. ред. А.М. Гинберга, А.Ф. Иванова, Л.Л. Кравченко. М.: Металлургия, 1987. 736 с.
- 2. Электрохимическая полировка: описание, применение, материалы [Электронный ресурс]. Режим доступа: https://nzmetallspb.ru/tehnologii/elektrohimicheskaya-polirovka-opisanie-primenenie-materialy.html Дата доступа: 25.12.2020.
- 3. Грилихес С.Я. Обезжиривание, травление и полирование металлов/ С.Я. Грилихес. Л.: Машиностроение, Ленингр. отд-ние, 1983. 101 с.