- 2. Грушова Е. И., Химическая технология мономеров в производстве органических продуктов: учебное пособие. / Е.И. Грушова Мн.: БГТУ, 2003 275 с.
- 3. Влияние природы сырья на эффективность селективной очистки масляных фракция N-метилпирролидоном, содержащим соэкстрагент. / Е. И. Грушова [и др.] // Труды БГТУ Сер. IV, Химия и технология орган. в-в 2006. Вып. XIV. С. 39–41.

УДК 665.637.7

Е. И. Грушова, проф., д-р. техн. наук; О. В. Карпенко, асп. (БГТУ, г. Минск)

ОСОБЕННОСТИ ПОЛУЧЕНИЯ НЕФТЯНОГО ТВЕРДОГО ПАРАФИНА МЕТОДОМ СТАТИЧЕСКОЙ КРИСТАЛЛИЗАЦИИ ИЗ СЫРЬЯ РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ

Наиболее универсальными методами выделения твердых парафинов из гача, полученного при депарафинизации рафинатов селективной очистки масляных фракций и содержащего значительное количество масла, являются методы кристаллизации с применением избирательных растворителей.

Выделение твердых парафинов методом статической кристаллизации не ново, однако, в настоящее время становится очень актуальным в связи с тем, что обеспечивает снижение энергетических и материальных затрат, не требует применения в технологии полярных растворителей, отсутствуют дорогостоящие узлы фильтрации и центрифугирования продукта, экологически безопасно [1, 2].

Вместе с тем, обезмасливанию таким способом подвергают только маловязкие гачи с содержанием масла до 10% мас. Поэтому с целью установления влияния состава исходного сырья на выход и качество готового продукта, эффективного ведения процесса на лабораторной установке были проведены опыты по обезмасливанию гачей производства ОАО «Нафтан» (РБ), «Омский завод смазочных материалов» — филиал ООО «Газпромнефть-СМ» (РФ), ООО «Новокуйбышевский завод масел и присадок» (РФ), ОАО «Ангарская нефтехимическая компания» (РФ), парафина нефтяного спичечного НС производства ООО «Лукойл-Пермнефтеоргсинтез» (РФ), ООО «Новокуйбышевский завод масел и присадок» (РФ).

Сырьё для процесса обезмасливания и полученный нефтяной твердый парафин были проанализированы по следующим физико-химическим показателям: температура плавления, вязкость кинемати-

ческая при 100°C, содержание масла, углеводородный состав.

Основные физико-химические показатели углеводородного сырья для установки получения парафина методом статической кристаллизации приведены в таблице 1.

Как видно из представленной в таблице 1 информации, физикохимические показатели углеводородного сырья в зависимости от месторождения исходной нефти и технологической схемы ее переработки на разных нефтеперерабатывающих заводах существенно отличаются.

Основные технологические параметры и физико-химические показатели полученного нефтяного твердого парафина приведены в таблице 2.

Таблица 1 - Основные физико-химические показатели углеволородного сырья

уттеводородного евірви									
Номер образца сырья	Температура	Массовая	Вязкость ки-	Содержание	Содержа-				
	плавления,	доля масла,	нематическая	n/iso углеводо-	ние УВ				
	°C	%	при 100°C, сСт	родов, %	C35+, %				
Образец 1	51-53	5-9	4,2-4,7	40/60	14-20				
Образец 2	50-54	10-12	4,0-4,2	60/40	8-15				
Образец 3	50-54	10-12	4,0-4,5	50/50	3-5				
Образец 4	54-56	4-7	4,4-4,6	55/45	13-18				
Образец 5	51-53	3-4	3,3-4,0	70/30	менее 1				
Образец 6	57-58	2-3	4,3-4,6	45/55	13-17				
Образец 7	58-59	3-4	5,0-5,2	45/55	28-30				
Образец 8	55-56	5-8	4,4-4,7	50/50	14-16				

Таблица 2 - Основные физико-химические показатели нефтяного твердого парафина

Номер образца парафина	Количество стадий для получения парафина	Выход парафина, %	Температура плавления парафина, °C	Массовая доля масла, %	Содержание n/iso углеводородов, %
Образец 1	2	30-50	59-61	0,8-1,8	60/40
Образец 2	2	50-55	57-58	0,8-1,8	75/25
Образец 3	2	50-55	58-60	0,8-1,8	65/35
Образец 4	1	60-65	58-59	0,8-1,8	70/30
Образец 5	1	65-70	53-55	0,4-0,8	75/25
Образец 6	1	45-50	59-60	0,8-1,8	65/35
Образец 7	2	30-50	62-64	1,2-1,8	55/45
Образец 8	1	50-55	58-60	1,2-1,8	60/40

Как видно из представленных данных, от качества исходного сырья существенно зависит количество и качество конечного продукта — нефтяного твердого парафина. Полученные результаты позволили определить основные параметры углеводородного сырья, которые позволяют оптимально использовать данную технологию для получе-

ния продукта заданного качества. Таким образом, обезмасливанию методом статической кристаллизации следует подвергать углеводородное сырье с содержанием масла до 10% мас. и не более 20% мас. углеводородов выше С35 нормального и изостроения. На процесс обезмасливания также влияет соотношение углеводородов нормального и изостроения – процесс протекает быстрее и с лучшим выходом целевого продукта при переработке сырья с большим содержанием углеводородов нормального строения.

Полученные результаты необходимы для определения условий, обеспечивающих эффективное ведение процесса выделения парафинов из нефтяного сырья методом статической кристаллизации, и решения проблем, обусловленных переработкой высоковязких гачей.

ЛИТЕРАТУРА

- 1. Казакова Л.П. Твердые углеводороды нефти. М.: Химия, 1986.-176 с.
- 2. Карпенко, О.В. Интенсификация процесса выделения твердого парафина из нефтяного сырья методом статической кристаллизации / О.В. Карпенко, Е.И. Грушова // Труды БГТУ. Химия, технология органических веществ и биотехнология. 2016. №4 (186) С. 54–58.

УДК 678.074

Э. Т. Крутько, проф., д-р. техн. наук; Н. А. Коваленко, доц., канд. хим. наук; Г. Н. Супиченко, ст. преп., канд. хим. наук; В. В. Боброва, асп. (БГТУ, г.Минск); Л. Б. Якимцова, доц., канд. хим. наук (БГУ, г. Минск)

ИСПОЛЬЗОВАНИЕ МЕТОДА ПОТЕНЦИОМЕТРИЧЕСКОГО ТИТРОВАНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АМИНОГРУПП В ПОЛИФУНКЦИОНАЛЬНЫХ ОЛИГОМЕРАХ

Олигоаминофенилены синтезировали следующим образом: в колбу, снабженную мешалкой, термометром, обратным холодильником, загружали перекристаллизованный мета- или парафенилендиамин и катализатор (пара-толуолсульфокислота). Реакционную смесь нагревали при 250 °C в течение 8–10 часов в токе очищенного и осущенного азота. Полученный продукт очищали от мономера экстракцией изопропанолом в аппарате Сокслета. Получали олигомерный продукт с выходом 55–60 %, имеющий следующую структурную формулу: