Мамаев С.А. Формы внутривидовой изменчивости древесных растений (на примере семейства *Pinaceae*). М.: Наука, 1973. 284 с.

Минина Е.Г., Третьякова И.Н. Геотропизм и рост хвойных. Новосибирск: Наука, 1983. 200 с.

Некрасова Т.П. Биологические основы семеношения кедра сибирского. Новосибирск: Наука, 1972. 272 с.

Путенихин В.П., Фарукшина Г.Г. Генофонд кедра сибирского в Республике Башкортостан // Вестн. Оренб. гос. ун-та. 2009. № 10. С. 151-153.

Рябчинская В.В. Кедр сибирский в Башкирии // Тр. Башкирской лесной опытной станции. 1960. Вып. V. Уфа: Башкир. книж. изд-во, 1961. С. 205-216.

Хусаинов Ф.Г. О разведении кедра сибирского в лесостепном Башкирском Предуралье // Интродукция и селекция растений на Урале. IV. Проблемы акклиматизации: Свердловск, 1967. С. 239-242.

УДК 630*181.5/.7 : 630*165.7 : 582.475 (476)

СОРТ СОСНА «НЕГОРЕЛЬСКАЯ»: ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ В ЛЕСНОМ ХОЗЯЙСТВЕ РЕСПУБЛИКИ БЕЛАРУСЬ

С.В. Ребко

Учреждение образования «Белорусский государственный технологический университет»

Впервые в Республике Беларусь сотрудниками кафедры лесных культур и почвоведения УО «БГТУ» получен сорт сосна «Негорельская», отличающийся интенсивным ростом в высоту, ранним и обильным семеношением. В настоящее время данный сорт включен в Государственный реестр сортов (приказ № 142 от 31.12.2013 г.) и рекомендован для внедрения во всех областях республики.

Ключевые слова: сорт, сосна обыкновенная, испытание.

Впервые в Республике Беларусь сотрудниками кафедры лесных культур и почвоведения учреждения образования «Белорусский государственный технологический университет» получен сорт «сосна Негорельская», отличающийся интенсивным ростом в высоту, ранним и обильным семеношением и устойчивостью к биотическим и абиотическим факторам среды (заявка № 2009015 от 27.03.2008 г.). В настоящее время сорт «сосна Негорельская» включен в Государственный реестр сортов (приказ № 142

J 1 /

от 31.12.2013 г. государственного учреждения «Государственная инспекция по испытанию и охране сортов растений» Министерства сельского хозяйства и продовольствия Республики Беларусь).

Основой повышения продуктивности сосновых насаждений является изучение и отбор местных популяций, их вовлечение в лесосеменное и лесокультурное производство с целью заметного повышения продуктивности древостоев. Также важнейшей задачей развития лесной селекции на ближайшую перспективу является получение и внедрение в культуру высокопродуктивного и высокоустойчивого гибридного потомства сосны обыкновенной, полученного на основе метода гибридизации, в том числе сортового уровня [1].

При переводе лесного семеноводства на генетико-селекционную основу конечной целью является получение сортов с последующим широким их внедрением в практику лесокультурного производства для создания высокопродуктивных насаждений.

Исследование особенностей роста сортового репродуктивного материала сосны обыкновенной проведены в испытательных культурах Негорельского учебно-опытного лесхоза (Неманско-Предполесский лесорастительный район) и ГЛХУ «Старобинский лесхоз» (Березинско-Предполесский лесорастительный район).

Проведенные исследования на участке испытательных культур, созданных в 2004 г. в Негорельском лесничестве (кв. 72, выд. 1) Негорельского УОЛХ, свидетельствуют о том, что испытуемые потомства на протяжении 10-летнего периода краткосрочных испытаний характеризуются высокими показателями роста (табл. 1).

Анализ возрастной динамики роста семенного потомства за последние 3 года на участке испытательных культур в Негорельском УОЛХ показывает, что лидирующее положение по высоте занимают семьи 3-5 (ранги 2, 1, 1), 2-2 (ранги 1, 2, 2), 1-3 (ранги 3, 3, 3), 2-6 (ранги 5, 5, 4) и 10-5 (ранги 4, 4, 7).

Таблица 1

Показатели роста семей сорта сосна «Негорельская» в испытательных культурах 2004 г. создания (Неманско-Предполесский лесорастительный район)

	2004 г. создания (Неманско-Пр						1 1 /				
5Я	г, лет	Показатели, см				К	, лет	Показатели, см			
Семья	Возраст, лет	<u>высота</u> min–max	прирост в <u>высоту</u> <i>min–max</i>	<u>диаметр</u> min–max	Ран	Ранг	Возраст, лет	<u>высота</u> min–max	прирост в <u>высоту</u> <i>min-max</i>	<u>диаметр</u> min–max	Ранг
	8	336,5±8,8 271–402	76,0±3,6 35–100	4,9±0,1 2,9-6,5	3	3-5	8	361,0±7,5 300-440	79,0±1,7 65–90	5,9±0,1 3,8-8,5	2
1- 3	9	412,5±10,0 340–480	77,5±5,0 60–90	5,8±0,2 3,9–7,1	3		9	447,5±10,0 390–495	85,0±5,0 70-95	6,5±0,2 4,8–8,7	1
	10	490,0±12,5 425-530	79,5±7,0 70–95	6,9±0,3 4,9-8,2	3		10	525,5±15,0 460–565	80,0±7,0 60-90	7,6±0,2 5,7–9,2	1
	8	311,5±7,3 271–389	73,4±1,6 63–92	4,2±0,1 3,0-5,2	11	4–	8	329,5±5,9 270–380	73,0±2,9 55–95	5,4±0,1 2,5–8,2	6
1- 6	9	387,5±10,0 345–475	75,0±5,0 55–85	5,0±0,2 3,8-6,1	11		9	405,0±10,0 345–440	75,0±5,0 55–90	6,3±0,2 3,7–8,9	6
	10	465,5±15,5 415-550	78,0±7,5 60–90	6,1±0,2 4,9–7,2	9		10	482,5±12,0 420–535	72,0±6,0 50-85	7,4±0,2 4,9–9,3	5
	8	321,5±9,0 245–415	69,0±2,7 40–95	$\frac{4,5\pm0,1}{2,6-7,0}$	8	4– 12	8	310,5±4,6 280–350	67,0±1,8 55-85	5,3±0,1 4,0-6,7	12
1- 8	9	389,0±10,0 290–490	67,5±5,0 45–90	5,3±0,2 3,9-6,8	10		9	377,5±7,5 320–415	65,0±5,0 50-80	6,1±0,2 4,9–7,6	12
	10	470,0±15,0 395–535	74,5±8,0 55–90	6,2±0,2 4,8-7,9	8		10	445,5±10,0 395–505	68,0±7,0 45-80	7,1±0,2 6,0–8,3	12
	8	367,5±5,1 315–390	81,0±1,9 70-90	5,8±0,1 4,5–7,0	1		8	293,3±8,8 220–345	61,1±2,8 40–80	3,9±0,1 1,3–5,5	13
2- 2	9	445,0±10,0 395–470	$\frac{80,0\pm5,0}{65-90}$	6,7±0,2 5,4-7,8	2	5– 1	9	$\frac{360,0\pm10,0}{285-405}$	65,0±5,0 45-85	5,0±0,2 3,8-6,3	13
	10	$\frac{520,0\pm15,0}{470-550}$	78,0±6,0 60–90	7,8±0,2 6,5–9,0	2		10	435,5±12,0 370–485	69,0±7,0 55-80	6,2±0,2 4,9–7,5	13
	8	334,5±5,2 270–360	77,0±2,5 60–90	4,9±0,1 2,8–7,3	5	6– 7	8	292,0±6,8 240-340	62,5±2,5 45-80	$\frac{3,9\pm0,1}{2,4-5,5}$	14
2-6	9	410,0±10,0 340–445	75,0±5,0 65–85	5,8±0,2 4,5–8,0	5		9	355,0±10,0 300–395	65,0±5,0 50-85	$\frac{4,8\pm0,2}{3,3-6,2}$	14
	10	$\frac{485,0\pm15,0}{400-545}$	77,0±9,0 55–90	7,0±0,2 5,5–9,3	4		10	425,0±12,0 370–496	67,0±7,0 55–80	5,9±0,2 4,6–7,4	14
	8	320,5±6,5 270–390	67,1±3,1 50–95	4,6±0,1 3,0–5,8	9	7– 8	8	317,5±6,8 235–380	72,6±2,5 60–90	4,7±0,1 2,0–7,3	10
2- 7	9	392,5±10,0 335–455	$\frac{70,0\pm5,0}{55-90}$	5,5±0,2 3,9-6,6	8		9	390,0±10,0 315–445	75,0±5,0 65–95	5,6±0,2 3,1-8,0	9
	10	$\frac{465,5\pm12,0}{400-515}$	74,0±8,0 60–95	6,8±0,2 5,0-7,9	10		10	460,0±12,0 385–495	72,0±7,0 60–90	6,8±0,2 4,3–8,7	11
	8	326,5±6,1 285–380	72,5±2,4 50–90	4,6±0,1 2,6–6,4	7	10 -5	8	336,0±6,8 290–400	69,5±3,5 35–90	5,1±0,1 3,6–6,4	4
3-3	9	$\frac{402,5\pm12,5}{365-450}$	75,0±5,0 60–90	5,5±0,2 3,5-7,3	7		9	410,0±10,0 360–465	75,0±5,0 55–85	6,0±0,2 4,5-7,2	4
	10	$\frac{480,5\pm15,0}{425-545}$	78,0±7,0 55–90	6,8±0,2 4,9–8,7	6		10	480,0±12,0 440-525	75,0±7,5 50–80	$\frac{7,1\pm0,2}{5,7-8,5}$	7

Среди потомств встречаются такие, которые на начальном этапе произрастания занимали среднее ранговое положение, а к 10-летнему возрасту улучшили данный показатель. К данной группе относятся семьи 4–1

(ранги 6, 6, 5) и 3–3 (ранги 7, 6, 6).

В испытательных культурах имеются также семьи, отстающие в росте на протяжении всего периода испытаний. В эту группу отнесены потомства 4–12 (ранги 12, 12, 12), 5–1 (ранги 13, 13, 13) и 6–7 (ранги 14, 14, 14).

Также были изучены особенности роста семенного потомства сосны обыкновенной в испытательных культурах (табл. 2), созданных в 2008 г. в кв. 19, выд. 36 Краснослободского опытного лесничества ГЛХУ «Старобинский лесхоз» (Березинско-Предполесский лесорастительный район).

Всего на испытание поставлено 20 семей гибридно-семенной плантации Негорельского УОЛХ. Для сравнения показателей роста в качестве контроля на участке высажено семьи, выращенные из семян лесосеменных плантаций первого порядка ГЛХУ «Калинковичский лесхоз» (К–1) и ГЛХУ «Старобинский лесхоз» (К–2). Испытуемые семьи в одинаковых условиях характеризуются различным ростом. Наивысшим рангом по высоте характеризуется семья 7–3 (ранги 1 и 1), у остальных потомств ранги высот в 5–6-летнем возрасте существенно разнятся, следовательно, стабилизации рангового положения семей по высоте в этом возрасте не наступила.

На основании проведенных исследований по изучению возрастной динамики роста семей гибридно-семенной плантации сосны обыкновенной Негорельского УОЛХ можно заключить, что окончательная стабилизация рангового положения гибридных потомств в испытательных культурах еще не наступила. До 5–6-летнего возраста ранги семей по высоте в культурах существенно отличаются, что указывает на обострение внутривидовой конкуренции за условия произрастания.

К 10-летнему возрасту наблюдается значительное выравнивание ранговых положений семей по высоте, однако окончательной стабилизации не наблюдается. В дальнейшем необходимо продолжить исследования по изучению особенностей роста сосны «Негорельская» в испытательных культурах.

Показатели роста семей сорта сосна «Негорельская» в испытательных культурах 2008 г. создания (Березинско-Предполесский лесорастительный район)

<u> </u>					neceki	ии лесорастительныи раион)				
Семья	Показатели, см				Семья	Показатели, см				
Cen	высота	диаметр	<u>длина хвои</u>	Ранг	Cen	высота	<u>диаметр</u>	длина хвои	Ранг	
	min–max	min-max	min–max			min–max	min–max	min–max		
3–6	$136,9\pm2,8$	$3,1\pm0,1$	$7,6\pm0,2$	11	8–5	$119,1\pm2,1$	$3,3\pm0,1$	$8,4\pm0,2$	19 19	
	110–160	2,3–4,6	6,0–10,0	11		102–148	2,5–4,4	6–11		
	$174,3\pm4,0$	1,6±0,1	$\frac{7,3\pm0,1}{2}$	21		181,4±3,0	1,5±0,1	7,2±0,2		
	130–218	0,7-2,4	7,0–8,0			147–216	1,0-2,1	5,0-9,0		
6–3	141,5±2,3	$\frac{3,2\pm0,1}{2,0,2,0}$	$\frac{7,4\pm0,2}{5,0,0,0}$	10	12-	$128,1\pm1,8$	$\frac{2,6\pm0,1}{2,0,2,2}$	$\frac{7,7\pm0,1}{6,0,0,0}$	14	
	116–160	2,0-3,9	5,0-9,0			109–145	2,0-3,3	6,0–9,0	18	
	$\frac{204,0\pm2,2}{186,220}$	$\frac{2,2\pm0,1}{1,6,2,0}$	$\frac{7,0\pm0,1}{6,0,8,0}$	8	3	$\frac{188,8\pm4,5}{127,228}$	$\frac{1,6\pm0,1}{0.7,2.1}$	$\frac{7,0\pm0,1}{6,0,8,0}$		
	186–229 122,6±3,9	1,6-3,0 2,7±0,1	6,0-8,0			137–228 124,1±5,5	0,7-2,1 2,9±0,1	6,0–8,0		
6–7	90–159	$\frac{2,7\pm0,1}{1,6-3,6}$	$\frac{6,9\pm0,1}{6,0-8,0}$	17	12– 9	$\frac{124,1\pm3,3}{90-210}$	$\frac{2,9\pm0,1}{1,8-3,6}$	7,9±0,2 6–10	16 22	
	214,6±1,1	2,1±0,1	6,9±0,1			122,3±3,6	$\frac{1,8-3,0}{2,7\pm0,1}$	7.1 ± 0.1		
	$\frac{214,021,1}{204-227}$	$\frac{2,1\pm0,1}{1,7-2,4}$	$\frac{6,0-8,1}{6,0-8,0}$	4		90–162	$\frac{2,7\pm0,1}{1,6-3,4}$	$\frac{7,1\pm0,1}{6,0-8,0}$		
	157,0±3,6	$\frac{1,7-2,4}{2,5\pm0,1}$	8,3±0,2			122,3±3,6	$\frac{1,0-3,4}{2,7\pm0,1}$	$7,1\pm0,1$		
7–3	112–195	$\frac{2,3-6,1}{2,4-4,2}$	6,0–10,0	1	12– 10	90–162	1,6–3,4	6,0-8,0	18	
	220,1±6,4	2,0±0,1	7,5±0,1			205,6±2,6	1,9±0,3	$7,8\pm0,2$	6	
	174–320	1,2–3,6	6,0–8,0	1		170–233	1,5–2,1	7,0–10,0		
7–4	144,8±1,3	$3,3\pm0,1$	$8,1\pm0,2$	7		$146,1\pm2,0$	$3,2\pm0,1$	$7,2\pm0,1$	5	
	130-158	2,7-4,0	7,0–9,0	/	13-	130-166	2,8-4,0	6,0-8,0		
	219,3±3,7	2,1±0,1	8,0±0,1	3		193,6±4,0	1,8±0,1	7,5±0,1	13	
	193–278	1,7–3,1	7,0–10,0	3		143–242	1,1-2,5	6,0-8,0		
7–5	$151,5\pm4,1$	$3,2\pm0,1$	$7,8\pm0,2$	2	13-2	$114,5\pm1,7$	$2,9\pm0,1$	$7,9\pm0,1$	22 17	
	111–205	2,3-4,0	6,0–10,0			99–132	1,8–3,8	6,5–9,0		
	202,6±3,2	1,9±0,1	$\frac{7,5\pm0,1}{1,0,0,0}$	9		$192,0\pm2,8$	2,0±0,1	7,3±0,1		
	167–237	1,4-2,2	6,0–8,0			165–227	1,6–2,5	7,0–8,0		
	148,1±3,1	$\frac{3,1\pm0,1}{2,0,2,7}$	$\frac{8.1\pm0.2}{2.01110}$	4	13– 3	$\frac{128,6\pm3,1}{05,170}$	$\frac{2,9\pm0,1}{2,1,2,6}$	6,4±0,1	13 16	
7–6	113–173 207,1±2,8	2,0-3,7	$7,0-11,0$ $7,1\pm0,1$			95-170 192,4±3,8	2,1-3,6 1,9±0,1	5,0-7,5 6,8±0,1		
	$\frac{207,1\pm2,8}{184-233}$	2,0±0,1 1,6–2,4	$\frac{7,1\pm0,1}{5,0-8,0}$	5		$\frac{192,4\pm3,8}{154-245}$	$\frac{1,9\pm0,1}{1,1-3,1}$	$\frac{6,8\pm0,1}{5,0-8,0}$		
	117,9±2,1	$\frac{1,0-2,4}{2,3\pm0,1}$	6,8±0,3			134,4±2,6	$\frac{1,1-3,1}{3,1\pm0,1}$	8,0±0,2		
7–7	96–142	$\frac{2,3\pm0,1}{1,7-2,8}$	5,0–11,0	20	13– 4	$\frac{194,42,0}{101-160}$	$\frac{5,1\pm0,1}{2,3-3,6}$	7,0–10,0	12	
	$202,3\pm5,1$	1,7±0,1	$7,0\pm0,1$			193,1±5,3	1,8±0,1	$7,0\pm0,1$	15	
	132–243	0,7-2,4	6,0-8,0	10		136–237	0,6-2,7	6,0–8,0		
	128,0±2,7	2,8±0,1	8,1±0,1	1.5	13-9	146,0±3,2	3,6±0,1	7,3±0,2	6 7	
7–8	103–155	2,5–3,4	7,5–10	15		111–188	3,0–4,1	5,0-8,5		
	200,1±3,4	2,0±0,1	6,9±0,1	11		$204,9\pm5,8$	1,9±0,1	6,9±0,1		
	170–231	1,4-2,7	6,0-8,0	11		143–285	0.9–3,6	6,0-8,0		
7–9	149,0±3,6	$3,5\pm0,1$	7,9±0,1	3	К-1	$117,3\pm2,5$	2,6±0,1	$7,2\pm0,2$	21	
	119–190	2,6–5,1	7,0–9,0	,		99–159	1,4–4,0	5,0–9,0		
	193,4±2,9	1,7±0,1	$\frac{6,7\pm0,1}{6}$	14		219,6±4,8	$\frac{2,2\pm0,1}{1}$	$\frac{7,9\pm0,1}{2}$		
	152-208	0,9–2,2	5,0-8,0	<u> </u>		184–270	1,5–3,4	7,0–9,0		
7– 10	143,8±3,1	$\frac{3,0\pm0,1}{2,2,3,6}$	$\frac{7,3\pm0,1}{6,0,0}$	8	К-2	142,0±2,2	$\frac{3,2\pm0,1}{2,0,1}$	6,8±0,1	9	
	106–174	2,2-3,6	6,0-8,0			120–175	2,0-4,0	6,0–8,0	12	
	178,1±4,7 137–237	$\frac{1,4\pm0,1}{0,7-2,2}$	$\frac{7,3\pm0,1}{6,0-8,0}$	20		199,7±3,3 167–250	1,8±0,1 1,0-3,0	$\frac{7,2\pm0,1}{6.0-8.0}$		
	131-231	0,7-2,2	∪,∪−∂,∪			107-230	1,0-3,0	6,0-8,0		

Проведенные исследования в испытательных культурах позволяют заключить, что сортовой репродуктивный материал сосны обыкновенной характеризуется высокими показателями роста, что свидетельствует о перспективности его использования для лесовосстановления и лесоразведения

в Республике Беларусь.

Литература

1. Программа сохранения лесных генетических ресурсов и развития селекционного семеноводства Республики Беларусь на период до 2015 г. / МЛХ Беларуси, Ин-т леса НАН Беларуси. – Минск, 1998. – 43 с.

УДК 635.925

ИСПОЛЬЗОВАНИЕ ДРЕВОВИДНЫХ ПИОНОВ В ОЗЕЛЕНЕНИИ

А.А. Реут А.А., Л.Н. Миронова

Федеральное государственное бюджетное учреждение науки Ботанический сад-институт Уфимского научного центра РАН

Представлены результаты изучения биологических особенностей двух видов древовидных пионов (P. suffruticosa, P. delavayi) при интродукции в Ботаническом саду-институте Уфимского научного центра РАН. Данные виды высокодекоративны, обильно и продолжительно цветут и могут использоваться в озеленении населенных пунктов.

Ключевые слова: P. suffruticosa, P. delavayi, интродукция, озеленение.

Древний род *Paeonia* L. включает более 30 видов. Кроме травянистых пионов, у которых надземная часть к зиме отмирает, в него входят полукустарниковые и кустарниковые формы с многолетними одревесневающими побегами [4].

Первые древовидные пионы были завезены в Россию в 1863 году в петербургский ботанический сад, где в течение 80 лет их выращивали в горшечной культуре в холодных оранжереях, и только в 1939 году перенесли в открытый грунт. В Ботаническом саду МГУ работа с древовидными пионами была начата в 1950-1952 годах ХХ века под руководством А.А. Сосновец и В.Ф. Фомичевой, в результате чего было получено несколько перспективных сеянцев. В Никитском ботаническом саду с 1958 года про-