образцов и их термо-ЭДС уменьшаются, а электропроводность увеличивается при замещении кобальта медью. Наибольшим значением фактора мощности характеризуется твердый раствор Na_{0.89}Co_{0.9}Cu_{0.1}O₂—615 мкВт/(м·K²) при 1100 К.

Работа выполнена в рамках ГПНИ «Функциональные и машиностроительные материалы и технологии, наноматериалы и нанотехнологии в современной технике», подпрограмма «Кристаллические и молекулярные структуры» (задание 1.02) и при поддержке Министерства образования Республики Беларусь.

Литература

1. Oxide Thermoelectrics. Research Signpost / ed. by K. Koumoto, I. Terasaki, N. Murayama, Trivandrum, India. 2002. 2. Liu P., Chen G., Cui Y. et al. // Solid State Ionics. 2008. Vol. 179. P. 2308–2312.

3. Красуцкая Н. С., Клындюк А. И., Евсеева Л. Е., Танаева С. А. // Весці НАН Беларусі. Сер. хім. навук 2012. № 1. С. 11-15.

4. Terasaki I., Tsukada I., Iguchi Y. // Phys. Rev. B. 2002. Vol. 65. P. 195106 (7 pages).

5. Park K., Jang K. U., Kwon J.-G. et al. // J. Alloys & Comp. 2006. Vol. 419. P. 213–219.

6. Клындюк А. И., Красуцкая Н. С., Дятлова Е. М. // Труды БГТУ. Сер. III. Химия и технол. неорган. в-в. 2010. Вып. XVIII. С. 99–102.

7. Клындюк А. И., Чижова Е. А., Сазанович Н. В., Красуцкая Н. С. // Термоэлектричество. 2009. № 3. С. 76-84.

8. Fouassier C., Matejka G, Reau J.-M. et al. // J. of Solid State Chem. 1973. Vol. 6. P. 532-537.

9. Premila M., Bharathi A., Gayathri N. et al. // Pramana – J. of Physics. 2006. Vol. 67. N 1. P. 153-162.

N. S. KRASUTSKAYA, N. S. DUDKO

SYNTHESIS, STRUCTURE AND PROPERTIES OF THE Na_xCo_{1-y}Cu_yO₂ (x = 0.55; 0.89; 0.00 $\le y \le 0.20$) SOLID SOLUTIONS

Summary

The Na_xCo_{1-y}Cu_yO₂ (x = 0.55; 0.89; 0.00 $\le y \le 0.20$) ceramics by means of solid-state reactions method had been synthesized and their crystal structure, thermal expansion, electrical conductivity and thermo-EMF had been investigated. The oxides prepared have structure of hexagonal γ -Na_xCoO₂ and are *p*-type conductors with metallic conductivity character. Substitution of cobalt by copper leads to the samples unit cell decreasing, electrical conductivity increasing and thermo-EMF decreasing. Maximal value of the power factor the Na_{0.89}Co_{0.9}Cu_{0.1}O₂ solid solution demonstrates-615 μ W/(m·K²) at 1100 K.

УДК 549.5:54-165:536.413:537.31/.32:666.654

И. В. МАЦУКЕВИЧ

СИНТЕЗ И ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ СЛОИСТОГО КОБАЛЬТИТА КАЛЬЦИЯ

Белорусский государственный технологический университет, Минск

Разработка новых термоэлектрических материалов, способных заменить дорогостоящие и малоустойчивые на воздухе при высоких температурах классические термоэлектрики на основе халькогенидов сурьмы, свинца и висмута, является одной из актуальных задач современной науки и техники. В качестве перспективной основы для получения эффективных высокотемпературных термоэлектриков рассматривается слоистый кобальтит кальция Ca₃Co₄O_{9+δ}, характеризующийся высокими значениями фактора мощности и показателя термоэлектрической добротности, относительно низкой стоимостью и устойчивостью к воздействию атмосферного кислорода [1]. Термоэлектрические свойства этого оксида могут быть улучшены при частичном замещении катионов кальция катионами редкоземельных элементов (P3Э) [2–4], а катионов кобальта катионами других переходных металлов, в том числе железа [5]. Известно, что использование альтернативных твердофазному «мягких» методов синтеза позволяет получать оксидную керамику с улучшенными характеристиками, в связи с чем разработка методов химической модификации Ca₃Co₄O_{9+δ} при помощи таких методов синтеза представляет значительный научный и практический интерес.

В данной работе цитратным методом синтезированы твердые растворы $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ (Ln = La, Pr, Sm, Dy, Yb) и $Ca_3Co_{4-x}Fe_xO_{9+\delta}$ (x = 0,05, 0,15), изучены их кристаллическая структура, микроструктура, тепловое расширение, электропроводность и термо-ЭДС.

Для синтеза керамических образцов состава Ca_{2.8}Ln_{0.2}Co₄O_{9+δ} и Ca₃Co_{4-x}Fe_xO_{9+δ} готовили растворы Ca(NO₃)₂·4H₂O (ч. д. а) ($C_1 = 0,6$ M), La(NO₃)₃×6H₂O (х. ч.) (растворы нитратов остальных РЗЭ получали растворением оксидов Ln₂O₃ (Ln = Pr, Sm, Yb) (х. ч.), Dy₂O₃ (ДиO-3) в концентрированной азотной кислоте) ($C_2 = 0,6$ M), Co(NO₃)₂·6H₂O (ч. д. а.) ($C_3 = 0,8$ M), Fe(NO₃)₃ (х. ч.) ($C_4 = 0,67$ M) и C_6 H₈O₇ (ч.) ($C_5 = 0,5$ M), которые смешивали в объемных отношениях $V_1 : V_2 : V_3 : V_5 = 2,8 : 0,2 : 3 : 15$ и $V_1 : V_3 : V_4 : V_5 = 3 : (4-x) : x : 15$ соответственно. Полученные растворы упаривали при температуре 343 К до образования вязкого фиолетового геля, который высушивали при 383–393 К на электроплитке до образования карамелеобразной массы. Массу измельчали и дополнительно высушивали в муфельной печи в течение 2 ч при 423 К с последующим перетиранием. Образовавшийся грязно-розовый порошок отжигали в течение 4 ч при 873 К. Полученный черный порошок тщательно перетирали и прессовали в таблетки и бруски, которые далее отжигали в течение 5 ч при 1123 К с последующим спеканием в течении 8 ч при 1183 К.

Идентификацию образцов и определение параметров их кристаллической структуры проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, CuK_{α}излучение) и ИК спектроскопии поглощения (Фурье-спектрометр Nexus фирмы ThermoNicolet). Кажущуюся плотность образцов ($\rho_{_{эксп}}$) находили по их массе и геометрическим размерам. Пористость (П) спеченной керамики определяли по формуле П = $(1-\rho_{_{эксп}}/\rho_{peнт})\cdot100\%$, где $\rho_{peнт}$ – рентгенографическая плотность образцов. Тепловое расширение, электропроводность (σ) и термо-ЭДС (S) спеченных керамических образцов исследовали на воздухе в интервале температур 300–1100 К по методикам, описанным в работах [6, 7]. Экспериментальные значения σ керамики пересчитывали на нулевую пористость по методике [6, 8]. Фактор мощности (P) керамики находили по формуле $P = S^2 \cdot \sigma$. Значения коэффициента линейного теплового расширения (КЛТР, α) и кажущейся энергии активации электропроводности (E_A) образцов находили из линейных участков зависимостей $\Delta l/l_0 = f(T)$ и $\ln(\sigma \cdot T) = f(1/T)$ соответственно.

После завершения синтеза образцы кобальтита кальция $Ca_3Co_4O_{9+\delta}$ и твердых растворов $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ (Ln = La, Pr, Sm, Dy, Yb), $Ca_3Co_{4-x}Fe_xO_{9+\delta}$ (x = 0,05, 0,15) были однофазными в пределах погрешности РФА и имели структуру слоистого кобальтита кальция [9] (рис. 1, кривые 1-5). Параметры элементарной ячейки твердых растворов $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ заметно увеличиваются при замещении кальция P3Э подгруппы лантана (La, Pr, Sm) и незначительно возрастают при замещении кальция P3Э подгруппы иттрия (Dy, Yb); замещение кобальта железом приводит к увеличению размеров элементарной ячейки фаз $Ca_3Co_{4-x}Fe_xO_{9+\delta}$, что согласуется с размерами замещаемого и замещающего катионов (согласно [10] для катионов Co^{3+} и Fe^{3+} при к. ч. = 6 в высокоспиновом состоянии ионные радиусы составляют 0,063 и 0,064 нм соответственно) (таблица). ИК спектры поглощения порошков $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ и $Ca_3Co_{4-x}Fe_xO_{9+\delta}$ содержали две выраженные полосы поглощения с экстремумами при $v_1 = 563-569$ см⁻¹ и $v_2 = 727-729$ см⁻¹ (рис. 1, кривые 6-10), соответствующие валентным колебаниям связей Co-O (v_1) и Ca-O (v_2) в структуре этих оксидов [11]. Положение полосы v_2 кобальтитов $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ и $Ca_3Co_{4-x}Fe_xO_{9+\delta}$, в пределах погрешности эксперимента, не изменялось при частичном замещении кальция P3Э и кобальта железом, полоса же v_1 смещалась в сторону больших частот. Таким образом, изовалентное замещение катионов Co^{3+} катионами

Рис. 1. Рентгеновские дифрактограммы (1-5) и ИК-спектры поглощения (6-10) порошков состава Ca₃Co₄O_{9+δ} (1, 6), Ca_{2.8}La_{0.2}Co₄O_{9+δ} (2, 7), Ca_{2.8}Pr_{0.2}Co₄O_{9+δ} (3, 8), Ca_{2.8}Yb_{0.2}Co₄O_{9+δ} (4, 9), Ca₃Co_{3.85}Fe_{0.15}O_{9+δ} (5, 10)

Fe³⁺, как и гетеровалентное замещение катиона Ca²⁺ катионами РЗЭ *Ln*³⁺ приводит к увеличению энергии кобальт-кислородных взаимодействий в структуре образующихся при этом сложных оксидов.

Кристаллиты керамики имели форму пластин со средними размерами $2,5 \times 1,7 \times 0,5$ мкм для кобальтита $Ca_3Co_4O_{9+\delta}$ (рис. 2, *a*) и $1,9 \times 1,2 \times 0,25$ мкм для твердого раствора $Ca_{2,8}Yb_{0,2}Co_4O_{9+\delta}$ (рис. 2, *b*), при этом пластины широкой стороной были ориентированы, главным образом, перпендикулярно оси прессования. Как видно из рис. 2, частичное замещение кальция иттербием приводит к уменьшению размеров кристаллитов.

Состав	Ca ₃ Co ₄ O _{9+δ}	$Ca_{2,8}Ln_{0,2}Co_4O_{9,8}$					Ca ₃ Co _{4-x} Fe _x O _{9+δ}	
		Ln = La	$Ln = \Pr$	Ln = Sm	Ln = Dy	Ln = Yb	<i>x</i> = 0,05	<i>x</i> = 0,15
а, нм	0,4830(7)	0,4879(6)	0,4836(7)	0,4873(5)	0,4855(7)	0,4828(7)	0,4857(7)	0,4868(5)
b ₁ , нм	0,4562(8)	0,4562(7)	0,4577(8)	0,4549(6)	0,4561(7)	0,4559(9)	0,4560(5)	0,4557(5)
<i>b</i> ₂ , нм	0,2812(6)	0,2817(9)	0,2835(9)	0,2812(9)	0,283(1)	0,281(1)	0,2843(6)	0,2843(6)
С, НМ	1,085(1)	1,093(1)	1,090(1)	1,090(1)	1,084(1)	1,094(1)	1,088(1)	1,089(1)
β, °	98,28(8)	99,44(7)	98,22(8)	99,56(6)	98,75(7)	98,49(9)	99,97(8)	100,28(4)
<i>V</i> , нм ³	0,2365(10)	0,2400(9)	0,2370(9)	0,2383(8)	0,2373(9)	0,2380(9)	0,2373(5)	0,2378(6)
b_1/b_2	1,622	1,619	1,614	1,618	1,612	1,622	1,604	1,603
$\alpha \times 10^5$, K ⁻¹	1,28	1,23	1,22	1,17	1,29	1,25	1,21	/1,20
<i>Е</i> ₄ , эВ	0,065	0,075	0,086	0,095	0,094	0,073	0,067	0,068
р, г/см ³	3,18	2,94	2,96	3,07	3,09	2,93	2,81	3,09

Значения параметров кристаллической структуры (*a*, *b*₁, *b*₂, *c*, β, *V*, *b*₁/*b*₂), коэффициента линейного термического расширения (*α*), кажущейся энергии активации электропроводности (*E*_A) и кажущейся плотности (*ρ*) керамики на основе слоистого кобальтита кальция

Зависимости $\Delta l/l_0 = f(T)$ исследованных образцов в интервале температур 300–1100 К были линейными, из чего следует, что в этом интервале температур слоистые кобальтиты $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ и $Ca_3Co_{4-x}Fe_xO_{9+\delta}$ не претерпевают структурных фазовых переходов. КЛТР твердых растворов $Ca_3Co_{4-x}Fe_xO_{9+\delta}$ и $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ (за исключением Ln = Dy) немного снижается по сравнению с незамещенной фазой $Ca_3Co_4O_{9+\delta}$ (таблица), что обусловлено увеличением энергии металлокислородных взаимодействий в структуре этих фаз при частичном замещении катионов Ca^{2+} катионами Ln^{3+} или катионов Co^{3+} катионами Fe^{3+} .

Кобальтиты Ca_{2,8}Ln_{0,2}Co₄O₉₊₈ и Ca₃Co_{4-x}Fe_xO₉₊₈ являются полупроводниками *p*-типа ($\partial \sigma / \partial T > 0, S > 0$, рис. 3, *a*, *b*, *c*, *d*), характер проводимости которых в интервале температур 800–1000 К изменялся от полупроводникового к металлическому (рис. 3, *a*, *c*), что обусловлено частичным восстановлением образцов за счет выделения кислорода из их объема в окружающую среду. Электропроводность твердых растворов Ca₃Co_{4-x}Fe_xO₉₊₈ была ниже, чем для незамещенной фазы Ca₃Co₄O₉₊₈. Значения кажущейся энергии активации электропроводности исследованной керамики незначительно возрастали при замещении кобальта железом и сильно увеличивались при замещении кальция РЗЭ (таблица). Термо-ЭДС кобальтитов Ca_{2.8}Ln_{0.2}Co₄O₉₊₈

Рис. 2. Электронные микрофотографии сколов (перпендикулярно оси прессования) слоистого кобальтита кальция Са₃Co₄O_{9+δ} (*a*) и твердого раствора на его основе Ca_{2 8}Yb_{0 2}Co₄O_{9+δ} (*b*)

Рис. 3. Температурные зависимости электропроводности (σ) (a, z), термо-ЭДС (S) (b, ∂) и фактора мощности (P) (s, e) керамики состава Ca₃Co₄O_{9+ δ} (I), Ca_{2.8}La_{0.2}Co₄O_{9+ δ} (Z), Ca_{2.8}Pr_{0.2}Co₄O_{9+ δ} (S), Ca_{2.8}Dy_{0.2}Co₄O_{9+ δ} (A), Ca_{2.8}Yb_{0.2}Co₄O_{9+ δ} (S), Ca_{3.6}Fe_{0.15}O_{9+ δ} (S), Ca_{2.8}Dy_{0.2}Co₄O_{9+ δ} (A), Ca_{2.8}Yb_{0.2}Co₄O_{9+ δ} (S), Ca_{3.6}Fe_{0.15}O_{9+ δ} (S) и Ca_{3.6}Co_{4.6}O_{9+ δ} (S) (S), Ca_{3.6}Fe_{0.15}O_{9+ δ} (S) (S), Ca_{3.6}Fe_{0.15}O_{9+ δ} (S) (S)

и Ca₃Co_{4-x}Fe_xO_{9+δ} увеличивалась с ростом температуры и для всех исследованных твердых растворов была выше, чем для незамещенной фазы (рис. 3, *б*, *д*); из последнего можно заключить, что как изовалентное замещение катионов Co³⁺ катионами Fe³⁺, так и гетеровалентное замещение катионов Ca²⁺ катионами Fe³⁺, так и гетеровалентное замещение катионов Ca²⁺ катионами Ln³⁺ приводит к уменьшению концентрации основных носителей заряда – «дырок» – в этих фазах. Сделанное заключение согласуется с антибатным характером концентрационных зависимостей электрофизических свойств твердых растворов Ca₃Co_{4-x}Fe_xO_{9+δ}, для которых $\partial S/\partial x_{Fe} < 0$, а $\partial \sigma/\partial x_{Fe} > 0$. Значения фактора мощности исследованной керамики возрастали при увеличении температуры и при T > 700К были в 1,5–3 раза выше, чем для незамещенной фазы Ca₃Co₄O_{9+δ} (рис. 3, *s*, *e*), при этом наибольшее значение P демонстрировал твердый раствор Ca_{2.8}Dy_{0.2}Co₄O_{9+δ} – 251 мВт/(м·K²) при T = 1100 K, что, главным образом, обусловлено высокими значениями его термо-ЭДС.

Таким образом, в работе цитратным методом получена керамика составов $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ (Ln = La, Pr, Sm, Dy, Yb) и $Ca_3Co_{4-x}Fe_xO_{9+\delta}$ ($0,0 \le x \le 0,15$), изучены ее кристаллическая структура и микроструктура, тепловое расширение, электропроводность и термо-ЭДС. Полученные оксиды являются полупроводниками *p*-типа, размеры элементарной ячейки, термо-ЭДС, энергия активации электропроводности и фактор мощности которых возрастают при замещении кальция РЗЭ и кобальта железом. Наибольшее значение фактора мощности демонстрирует керамика состава $Ca_{2,8}Dy_{0,2}Co_4O_{9+\delta} - 251$ мкВт/(м·K²) при температуре 1100 К.

Работа выполнена в рамках ГПНИ «Функциональные и машиностроительные материалы и технологии, наноматериалы и нанотехнологии в современной технике», подпрограмма «Кристаллические и молекулярные структуры» (задание 1.02).

Литература

- 2. Liu H. Q., Song Y., Zhang S. N. et al. // J. of Phys. and Chem. of Solids. 2009. Vol. 70. P. 600-603.
- 3. Prevel M., Perez O., Noudem J. G. // Solid State Sciences. 2007. Vol. 9. P. 231-235.
- 4. Zhang F. P., Zhang X., Lu Q. M. et al. // Solid State Sciences. 2011. Vol. 13. P. 1443-1447.
- 5. Wang Y., Sui Y., Ren P. et al. // Chem. Mater. 2010. Vol. 22. P. 1155-1163.
- 6. Клындюк А. И., Чижова Е. А. // Неорган. матер. 2006. Т. 42. N 5. С. 611-622.
- 7. Клындюк А. И., Чижова Е. А., Сазанович Н. В., Красуцкая Н. С. // Термоэлектричество. 2009. № 3. С. 76–84.
- 8. Tripathi A. K., Lal H. B. // Mater. Res. Bull. 1980. Vol. 15. N 2. P. 233-242.
- 9. Masett A. C., Michel C., Maignan A. et al. // Phys. Rev. B. 2000-I. Vol. 62. N. 1. P. 166-175.

10. Shannon R. D., Prewitt R. D. // Acta Crystallogr. 1969. Vol. 25B. Pt. 5. P. 946-960.

11. Xu J., Wei C., Jia K. // J. of Alloys and Comp. 2010. Vol. 500. P. 227-230.

^{1.} Koumoto K., Terasaki I., Murayama N. Oxide Thermoelectrics. Research Signpost // Trivandrum. India. 2002.

I. V. MATSUKEVICH

SYNTHESIS AND THERMOELECTRIC PROPERTIES OF THE CERAMICS BASED ON THE LAYERED CALCIUM COBALTITE

Summary

The $Ca_{2,8}Ln_{0,2}Co_4O_{9+\delta}$ (Ln = La, Pr, Sm, Dy, Yb) and $Ca_3Co_{4-x}Fe_xO_{9+\delta}$ (x = 0,05, 0,15) solid solutions using citrate method had been synthesized, their lattice constants had been determined and their thermal expansion, electrical conductivity and thermo-EMF had been studied. The oxides prepared are the *p*-type semiconductors, which unit cell parameters, thermo-EMF, activation energy of electrical conductivity and power factor at substitution of calcium by REE and copper by iron are increased. Maximal value of power factor demonstrates the $Ca_{2,8}Dy_{0,2}Co_4O_{9+\delta}$ solid solution – 251 μ W/(m·K²) at 1100 K.

УДК 532.783:547.6-304.4

В. С. МИКУЛИЧ, О. О. ЧУВАШЕВА

СИНТЕЗ И СВОЙСТВА НОВОГО АЗОКРАСИТЕЛЯ ДЛЯ ФОТООРИЕНТАЦИИ ЖИДКИХ КРИСТАЛЛОВ

Институт химии новых материалов НАН Беларуси, Минск

Введение. Известно, что одним из ключевых элементов многокомпонентной тонкопленочной структуры ЖК-дисплея является анизотропная тонкая пленка – ориентант, поверхность которой находится в контакте с жидким кристаллом (ЖК) и ориентирует его директор. Ранее такие анизотропные материалы получали механическим натиранием тонкого слоя полимера на подложке, но такая технология создания ориентирующих поверхностей сопровождается рядом недостатков: образование механических деформаций в пленке, пыли, накапливания статического электричества на поверхности. Все это ухудшает качество получаемых устройств: снижается угол обзора, контрастность, качество изображения [1]. Перечисленные недостатки являются атрибутом применяемой контактной технологии ориентации ЖК и могут быть полностью исключены при применении альтернативного способа – технологии фотоориентации.

Фотоориентация – это бесконтактный процесс создания анизотропной структуры в пленке под действием поляризованного света. Особый интерес представляют фотоориентируемые азокрасители, так как они обладают обратимыми свойствами фотоориентации, что делает возможным использовать их в различных устройствах [2].

Нами были синтезированы и исследованы новые азокрасители, которые могут быть использованы для технологии фотоориентации.

Экспериментальная часть

Материалы и оборудование. Бензидин (х. ч.), 4-метилсалициловая кислота (Sigma-Aldrich), а также остальные реактивы и растворители использованы без дополнительной очистки.

Спектры ¹Н ЯМР синтезированных соединений записаны в dmso d_{δ} на приборе Bruker Advance 500 с рабочей частотой 500 МГц. Химические сдвиги измеряли по шкале дельта относительно сигнала остаточных протонов в дейтерированном ДМСО ($\delta = 2,50$ м. д.). ИК-спектры были записаны на ИК-Фурье спектрометре Bruker Tensor 27, Германия. Спектры поглощения измеряли на приборе Ocean Optics HR400CG-UV-NIR, США.

Синтез красителей. Рис. 1 показывает синтетическую схему красителей и их структуры. Азокрасители были получены по стандартной методике, как описано в литературе [3].

Получение 4,4'-бис[1-(4-гидрокси-3-карбоксилат-6-метил)финилазо]-дифенила калия (FbF-2). При интенсивном перемешивании в воду объемом 4 мл приливали концентрированную соляную кислоту (0,06 моль, 4,8 мл), вносили бензидин 1 (0,01 моль 1,84 г) и данную смесь перемешивали до образования однородной суспензии, к которой приливали кипящую воду до полного растворения бензидина. Охладив полученный раствор до -5 °C, при интенсивном перемешивании вносили в течение 10 с под поверхность реакционной смеси 4 мл раствора KNO₂ (0,02 моль, 1,7 г) и раствор перемешивали еще 1,5 ч при температуре не выше +5 °C.