Студ. М.С. Згурская Науч. рук. доц. Е.И. Кордикова (кафедра механики и конструирования, БГТУ)

ВЛИЯНИЕ ПРОДОЛЖИТЕЛЬНОСТИ ТЕРМООБРАБОТКИ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ФОТОПОЛИМЕРНЫХ СМОЛ

Лазерная стереолитография (SLA – Stereolithography) – это технология, основанная на послойном отверждении жидкого фотополимерного материала под действием луча лазера. После печати образцы промывают от остатков смолы и помещают в сушильную камеру для финального отверждения. Целью представленной работы является изучение влияния продолжительности термообработки на физико-механические характеристики стандартной фотополимерной смолы Formlabs standart white. Определение основных физико-механических характеристик проводили в соответствии с ГОСТ на образцах рекомендованной формы и размеров. Напечатанные образцы подвергались термообработке в течении 30, 45 и 60 минут при температуре 60°С.

Наибольшие физико-механические характеристики при растяжении наблюдаются у образцов, время термообработки которых составило 60 минут. Показания предела прочности и модуля упругости увеличились на 18,7% и 21,7% относительно значений образцов, не подвергавшихся термообработке (таблица).

Таблица – Основные физико-механические свойства фотополимерной смолы

Время термообработки, мин	Без термообработки	30	45	60
Предел прочности при растяжении, МПа	36,8	45,3	48,8	50,3
Модуль упругости при растяжении, %	1,2	1,5	1,8	2,0
Предел прочности при изгибе, %	36,5	99,2	104,0	102,7
Модуль упругости при изгибе, %	1,0	2,9	3,8	3,0

Наибольшие физико-механические характеристики при изгибе наблюдались у образцов, время термообработки которых составило 45 минут. Показания предела прочности и модуля упругости увеличились на 64,9% и 73,2% относительно значений образцов, не подвергавшихся термообработке (таблица). Результаты эксперимента позволяют сделать вывод о необходимости проведения финальных операций по термообработке напечатанных изделий из фотополимерных смол, что приводит к повышению физико-механических свойств. Продолжительность выдержки при температуре должно составлять не менее 45 минут.