Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Методические рекомендации для решения задач по дисциплине «Аналитическая химия и физико-химические методы анализа» для студентов химико-технологических специальностей заочной формы обучения

Минск 2008

УДК 543.4:543.5(075.8) ББК 24.46я7 Ф50

Рассмотрены и рекомендованы к изданию редакционно-издательским советом университета

Составители: А. Е. Соколовский, Н. Ф. Шакуро, Т. Н. Кийко

Рецензент профессор кафедры аналитической химии БГУ, доктор химических наук С. А. Мечковский

По тематическому плану изданий учебно-методической литературы на 2008 год. Поз.105.

Для студентов химико-технологических специальностей заочной формы обучения.

© УО «Белорусский государственный технологический университет», 2008

ПРЕДИСЛОВИЕ

Настоящее учебно-методическое пособие разработано с целью оказания помощи студентам заочного факультета при решении задач контрольного задания № 3 по физико-химическим методам анализа [1].

В нем даны примеры решения задач из всех разделов контрольной работы. При их выборе мы руководствовались опытом проверки заданий. Особое внимание уделяется типовым задачам, в решении которых наиболее часто встречаются ошибки, и задачам, примеры решения которых редко встречаются в рекомендуемой литературе. Напротив, в случае однотипных задач мы приводим не решение, а только его алгоритм.

Для облегчения использования данного пособия, мы сохранили в нем ту же последовательность тем, как и в контрольном задании [1]. Названия соответствующих разделов также совпадают в обоих пособиях. В каждом примере приведены номера соответствующих задач из контрольного задания, при решении которых этот пример можно использовать.

При разборе типовых задач даются краткие пояснения теоретического характера, основные формулы, общие алгоритмы и ход решения. Дать решения задач всех типов, встречающихся в контрольных работах, невозможно. Однако в приведенных примерах содержатся основные элементы решения практически любой задачи.

Значения физико-химических констант, используемых в данном пособии, взяты из справочников [2, 3]. Ими же мы рекомендуем пользоваться при выполнении контрольных заданий. Точность измеряемых и расчетных величин приведена в приложении (табл. 1, 2). Помощь при написании ответов на теоретические вопросы Вы можете найти в книге [4].

Разделы 3, 7 и подраздел 8.2 написаны Соколовским А. Е., 2, 4 и 6 Шакуро Н. Ф., 1, 5 и подраздел 8.1 Кийко Т. Н.

1. ПОТЕНЦИОМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА

1.1. Прямая потенциометрия

Пример 1 поможет Вам при решении задач 17–20.

Для определения фторид-ионов методом градуировочного графика приготовили серию стандартных растворов и измерили потенциалы фторид-селективного электрода относительно хлорсеребряного электрода сравнения (табл. 1).

 Таблица 1

 Результаты измерений потенциала в стандартных растворах

$C(F^{-}), M$	$1 \cdot 10^{-5}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-1}$
E, MB	330	275	225	170	120

Определить концентрацию фторид-ионов (г/л) в исследуемом образце, если 15,0 мл исследуемого раствора поместили в колбу вместимостью 100,0 мл и довели объем до метки фоновым раствором. Потенциал фторид-селективного электрода в полученном растворе составил 195 мВ.

Решение. Согласно уравнению Нернста, потенциал электрода E является функцией $-\lg C$, поэтому преобразуем исходные данные в табл. 2.

Таблица 2 **Данные для построения градуировочного графика**

$-\lg C(F^-)$	5	4	3	2	1
E, MB	330	275	225	170	120

Построим градуировочный график (рис. 1).

По графику найдем логарифм концентрации фторид-ионов в растворе, соответствующий значению потенциала 195 мВ, и рассчитаем концентрацию фторид-ионов в исследуемом растворе:

$$-\lg C(F^-) = 2,43;$$

 $C(F^-) = 10^{-2,43} = 3,72 \cdot 10^{-3}$ моль/л.

Так как исходный анализируемый раствор перед измерением был разбавлен, то с учетом разбавления

$$C_1 \cdot V_1 = C_2 \cdot V_2;$$

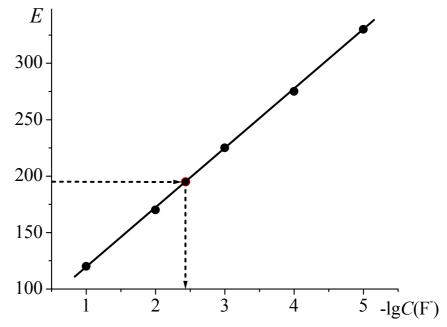


Рис. 1. Зависимость потенциала фторидного электрода от $-\lg C(F)$

$$C_{\text{исх}}(F^-) \cdot 15,0 = 3,72 \cdot 10^{-3} \cdot 100,0;$$

 $C_{\text{исх}}(F^-) = 0,0248 \text{ моль/л.}$

Для перевода молярной концентрации в массовую используем значение молярной массы фторид-иона — 18,9984 г/моль:

$$\rho^*(F^-) = 0.0248 \cdot 18.9984 = 0.4712 \text{ г/л}.$$

1.2. Потенциометрическое титрование

Пример 2 поможет Вам при решении задач 16, 21–28.

Навеску железосодержащей руды массой 0,3241 г растворили в кислоте без доступа воздуха, перенесли в мерную колбу вместимостью 200,0 мл и довели объем до метки. Отобрали аликвоту полученного раствора 10 мл, поместили в стакан для титрования и оттитровали железо (II) потенциометрически 0,05000 н. раствором КМпО₄. Полученные результаты представлены в табл. 3.

Построить интегральную и дифференциальную кривые титрования и рассчитать массовую долю железа в руде.

 Таблица 3

 Результаты потенциометрического титрования

<i>V</i> , мл	2,5	2,6	2,7	2,8	2,85	2,9	3	3,1	3,2
E, mB	585	570	550	520	410	190	165	155	145

Решение. При титровании в растворе протекает реакция:

$$5Fe^{2+} + MnO_4^- + 8H^+ = 5Fe^{3+} + Mn^{2+} + 4H_2O.$$

Согласно полуреакциям, определим факторы эквивалентности:

$$Fe^{2+} - 1e^{-} = Fe^{3+}, f_{3KB}(Fe^{2+}) = 1;$$

 $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O, f_{3KB}(MnO_4^-) = 1/5.$

Согласно закону эквивалентов:

$$C(1 \text{ Fe}^{2+}) \cdot V(\text{Fe}^{2+}) = C(1/5 \text{ MnO}_4^-) \cdot V(\text{MnO}_4^-),$$

где $C(1 \text{ Fe}^{2+})$ и $C(1/5 \text{ MnO}_4^-)$ — нормальные концентрации анализируемого вещества и титранта соответственно, $V(\text{Fe}^{2+})$ — объем аликвоты анализируемого раствора, $V(\text{MnO}_4^-)$ — объем титранта в точке эквивалентности.

Для нахождения $V(MnO_4^-)$ построим интегральную кривую титрования в координатах E-V, которая имеет s-образный вид (рис. 2).

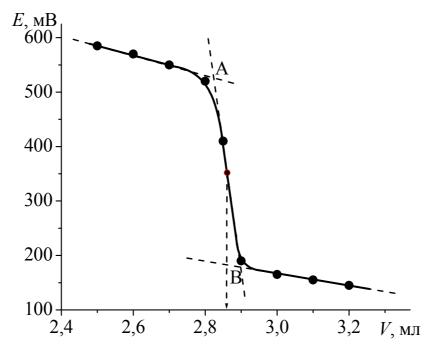


Рис. 2. Интегральная кривая титрования Fe (II)

Точка эквивалентности определяется по точке перегиба кривой титрования. Для ее нахождения продлеваем линейные участки до скачка, в области скачка и после скачка и определяем середину отрезка AB между точками пересечения линейных участков.

Тогда объем титранта в точке эквивалентности: $V(\text{MnO}_4^-) = 2,86 \text{ мл}.$

Для построения дифференциальной кривой титрования преобразуем исходные данные: рассчитаем ΔV и ΔE как разности двух соседних значений ($\Delta V = V_{i+1} - V_i$, $\Delta E = E_{i+1} - E_i$,). Далее рассчитаем отношение $\Delta E/\Delta V$, соответствующее каждому значению V, и сведем данные в табл. 4.

 Таблица 4

 Данные для построения дифференциальной кривой титрования

V, мл	2,5	2,6	2,7	2,8	2,85	2,9	3	3,1	3,2
ΔV	1	0,1	0,1	0,1	0,05	0,05	0,1	0,1	0,1
E, mB	585	570	550	520	410	190	165	155	145
ΔE	_	15	20	30	110	220	25	10	10
$\Delta E/\Delta V$		150	200	300	2200	4400	250	100	100

Построим дифференциальную кривую титрования в координатах $\Delta E/\Delta V-V$ (рис. 3).

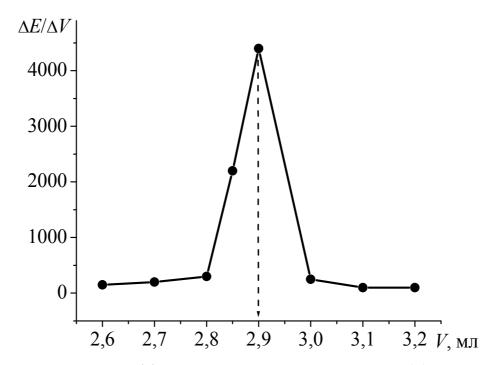


Рис. 3. Дифференциальная кривая титрования Fe (II)

Объем титранта в точке эквивалентности находим по положению максимума на дифференциальной кривой:

$$V(MnO_4^-) = 2.9$$
 мл.

Рассчитаем концентрацию железа (II) в титруемом растворе согласно закону эквивалентов:

$$C(1 \text{ Fe}^{2+}) \cdot 10,0 = 0,05000 \cdot 2,9;$$

 $C(1 \text{ Fe}^{2+}) = 0,01450 \text{ моль/л.}$

Масса железа в исследуемом растворе:

$$m(\text{Fe}) = C(1 \text{ Fe}^{2+}) \cdot V_{\text{p-pa}} \cdot M(1 \text{ Fe}^{2+}).$$

С учетом исходного объема раствора (200,0 мл = 0,2000 л) и молярной массы железа (55,845 г/моль) находим массу железа в растворе:

$$m(\text{Fe}) = 0.01450 \cdot 0.2000 \cdot 55.845 = 0.1620 \text{ }\Gamma.$$

Соответственно, эта масса железа содержалась в растворенной навеске руды. Тогда рассчитаем содержание железа в руде:

$$\omega(\text{Fe}) = \frac{m(\text{Fe})}{m_{\text{руды}}} \cdot 100\%;$$

$$\omega(\text{Fe}) = \frac{0.1620}{0.3241} \cdot 100\% = 49.98\%.$$

Пример 3 поможет Вам при решении задач 29-30.

Для определения уксусной и соляной кислот в их смеси 5,0 мл анализируемого раствора поместили в стакан для титрования и оттитровали потенциометрически 0,05000 н. раствором КОН. Используя полученные данные (табл. 5), построить кривые титрования и определить концентрации кислот (моль/л) в исследуемом растворе.

Таблица 5 Результаты потенциометрического титрования смеси кислот

V, мл	0,2	0,4	0,6	0,8	1,0	1,2	1,4			
pН	2,35	2,4	2,45	2,55	2,9	3,55	4,8			
	Окончание табл.									
<i>V</i> , мл	1,6	1,8	2,0	2,2	2,4	2,6	2,8			
рН	4,95	5,45	6,1	9,4	11,1	11,3	11,5			

Решение. Для нахождения концентраций кислот в анализируемом растворе по данным титрования используем закон эквивалентов (пример 2).

В протекающих при титровании реакциях

$$HCl + KOH = KCl + H_2O$$
,
 $CH_3COOH + KOH = CH_3COOK + H_2O$

факторы эквивалентности кислот и КОН равны 1, а молярные концентрации реагирующих веществ соответствуют нормальным.

Соответственно

$$C(1\text{HCl}) \cdot V(\text{HCl}) = C(1\text{KOH}) \cdot V'(\text{KOH}),$$

 $C(1\text{CH}_3\text{COOH}) \cdot V(\text{CH}_3\text{COOH}) = C(1\text{KOH}) \cdot V''(\text{KOH}).$

Для нахождения объема титранта в точке эквивалентности построим интегральную кривую титрования в координатах рH-V (рис. 4).

Так как в анализируемом растворе присутствуют две кислоты, то на кривой титрования наблюдаются два скачка: первый соответствует оттитровыванию сильной кислоты HCl, второй — оттитровыванию слабой кислоты CH_3COOH . Точки эквивалентности можно определять по точкам перегиба интегральной кривой титрования (пример 2), но в данном случае при наличии двух близких скачков удобнее определить точки эквивалентности по положению максимумов на дифференциальной кривой титрования $\Delta pH/\Delta V - V$.

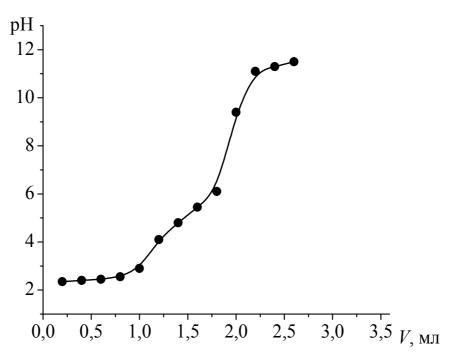


Рис. 4. Интегральная кривая титрования смеси кислот

Для построения дифференциальной кривой титрования преобразуем исходные данные: рассчитаем ΔV как разность двух соседних значений $V\left(\Delta V=V_{i+1}-V_{i}\right)$ и Δ pH — аналогично. Далее рассчитаем от-

ношение $\Delta pH/\Delta V$, соответствующее каждому значению V, и сведем данные в табл. 6.

Таблица 6 Данные для построения дифференциальной кривой титрования

V, мл	0,2	0,4	0,6	0,8	1,0	1,2	1,4
ΔV	_	0,2	0,2	0,2	0,2	0,2	0,2
pН	2,35	2,4	2,45	2,55	2,9	3,55	4,8
ΔpΗ	_	0,05	0,05	0,1	0,35	0,65	1,25
$\Delta pH/\Delta V$	_	0,25	0,25	0,5	1,75	3,25	6,25
					C	кончани	е табл. 6
V, мл	1,6	1,8	2,0	2,2	2,4	2,6	2,8
ΔV	0,2	0,2	0,2	0,2	0,2	0,2	0,2
pН	4,95	5,45	6,1	9,4	11,1	11,3	11,5
ΔpΗ	0,15	0,5	0,65	3,3	1,7	0,2	0,2
$\Delta pH/\Delta V$	0,75	2,5	3,25	16,5	8,5	1,0	1,0

Построим дифференциальную кривую титрования в координатах $\Delta pH/\Delta V-V$ (рис. 5). По данной кривой определим объемы титранта в точках эквивалентности:

$$V_1 = 1,39$$
 мл, $V_2 = 2,20$ мл.

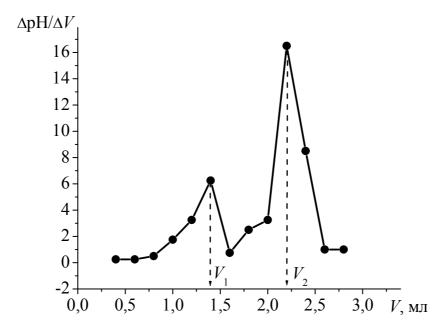


Рис. 5. Дифференциальная кривая титрования смеси кислот

Оттитровыванию HCl соответствует объем V' = 1,39 мл, оттитровыванию CH₃COOH – объем V'' = (2,20-1,39) = 0,81 мл.

Рассчитаем концентрации кислот в титруемом растворе согласно закону эквивалентов:

```
C(HCl) \cdot 5 = 0.05000 \cdot 1.39;

C(HCl) = 0.0139 \text{ моль/л.}

C(CH_3COOH) \cdot 5.0 = 0.05000 \cdot 0.81;

C(CH_3COOH) = 0.0081 \text{ моль/л.}
```

При решении любых задач, основанных на использовании закона эквивалентов (не только в потенциометрическом методе анализа), следует использовать молярные концентрации эквивалентов веществ, и не забывать учитывать факторы эквивалентности.

2. КОНДУКТОМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА

При решении **задачи № 46** необходимо провести вычисления в следующей последовательности:

- написать уравнения реакций взаимодействия веществ;
- построить кривую высокочастотного титрования;
- определить по кривой титрования, какой объем HCl затрачивается на титрование фенолята натрия (т. к. в задаче применяется обратное титрование, то вначале титруется NaOH, который остался после взаимодействия NaOH с фенолом, а потом титруется образовавшийся фенолят натрия);
- по закону эквивалентов найти концентрацию фенола (количество моль эквивалента фенолята натрия равно количеству моль эквивалента фенола);
 - рассчитать массу фенола;
 - рассчитать массовую долю фенола.

Принцип решения см. в примере 4.

При решении задач № 47–49 необходимо:

- написать уравнение реакции взаимодействия веществ;
- построить кривую титрования;
- определить $V(H_2SO_4)$ в точке эквивалентности;
- определить массу хлорида бария.

Принцип решения см. в примере 4.

Пример 4 поможет Вам при решении задач 50-56.

Анализируемую смесь веществ HCl и HF массой 1,2365 г поместили в мерную колбу вместимостью 100,0 мл и довели объем до метки. При титровании аликвоты 10,0 мл раствором КОН с концентрацией 0,09999 н. получили следующие результаты (табл. 7).

Таблица 7

<i>V</i> (КОН), мл	5,00	6,00	7,00	8,00	9,0	10,0	11,0	12,0	13,0	14,0
I, MA	2,42	2,15	1,88	1,76	1,80	1,83	1,86	1,98	2,44	2,90

Построить кривую титрования и вычислить массу и массовые доли (%) HCl и HF в анализируемой смеси, а также массовые концентрации HCl и HF в приготовленном растворе (100,0 мл).

Решение. Запишем уравнения реакций

$$HCl + KOH = KCl + H_2O;$$

$$HF + KOH = KF + H_2O$$
.

Построим кривую титрования (рис. 6).

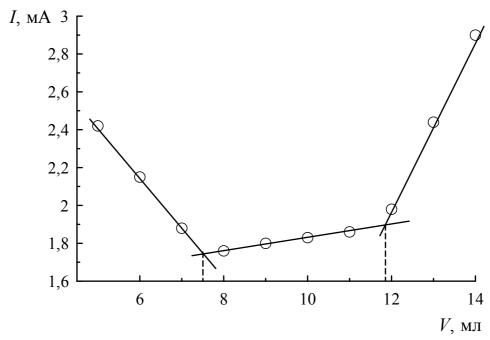


Рис. 6. Кривая титрования смеси HCl и HF

В первой точке эквивалентности заканчивает титроваться сильная кислота HCl, а во второй – слабая HF.

По кривой титрования определяем объем титранта в точках эквивалентности: $V_1 = 7,50$ мл, $V_2 = 11,77$ мл. Значит, на титрование HCl затрачено 7,50 мл щелочи, а на НГ приходится

$$V_3 = V_2 - V_1 = 11,77 - 7,50 = 4,27$$
 мл.

Концентрации анализируемых веществ рассчитаем из закона эквивалентов

$$C_1 \cdot V_1 = C_2 \cdot V_2.$$

Концентрации кислот равны:

$$\begin{split} &C(1\text{HCl}) = \frac{C(\text{KOH}) \cdot V_1}{V_{\text{аликвоты}}} = \frac{0,09999 \cdot 7,50}{10} = 0,07499 \;\; \text{моль/л;} \\ &C(1\text{HF}) = \frac{C(\text{KOH}) \cdot V_3}{V_{\text{аликвоты}}} = \frac{0,09999 \cdot 4,27}{10} = 0,04270 \;\; \text{моль/л.} \end{split}$$

$$C(1\text{HF}) = \frac{C(\text{KOH}) \cdot V_3}{V_{\text{аликвоты}}} = \frac{0,09999 \cdot 4,27}{10} = 0,04270 \text{ моль/л.}$$

Массы анализируемых веществ найдем по формуле

$$m = C \cdot M \cdot V$$
;

$$M(HC1) = 36,461 \ \Gamma/моль;$$

$$M(HF) = 20,006 \ \Gamma/моль;$$

$$m(HC1) = 0.07499 \cdot 36.461 \cdot 0.1 = 0.2734 \, \Gamma;$$

$$m(HF) = 0.04270 \cdot 20.006 \cdot 0.1 = 0.0854 \text{ r.}$$

Массовые концентрации определяем по формуле

$$\rho^*(HC1) = \frac{m}{V} = C \cdot M = \frac{0.2734}{0.1} = 2.734 \frac{\Gamma}{\Pi};$$

$$\rho^* (HF) = \frac{m}{V} = \frac{0.0854}{0.1} = 0.854 \frac{\Gamma}{\pi}.$$

Массовая доля HCl составляет

$$\omega = \frac{m_{\text{вещества}} \cdot 100\%}{m_{\text{навески}}} = \frac{0,2734 \cdot 100\%}{1,2365} = 22,11\% .$$

Массовая доля НГ составляет

$$\omega = \frac{m_{\text{вещества}} \cdot 100\%}{m_{\text{навески}}} = \frac{0.0854 \cdot 100\%}{1,2365} = 6.91\%$$
.

Пример 5 поможет Вам при решении задач 57-60.

Используя стандартные растворы, построили градуировочный график (табл. 8). При измерении электропроводности анализируемого раствора была получена величина $\chi = 200$ См/см. Определить массовую и молярную концентрацию эквивалента NaOH.

Таблица 8

<i>C</i> (1 NaOH), моль/л	0,15	0,2	0,3	0,4	0,5
χ, См/см	209	203	196	187	178

Решение. Построим градуировочный график (рис. 7).

Найдем по графику значение концентрации, соответствующее заданному аналитическому сигналу $\chi = 200$ См/см:

$$C(1 \text{ NaOH}) = 0.24 \text{ моль/л}.$$

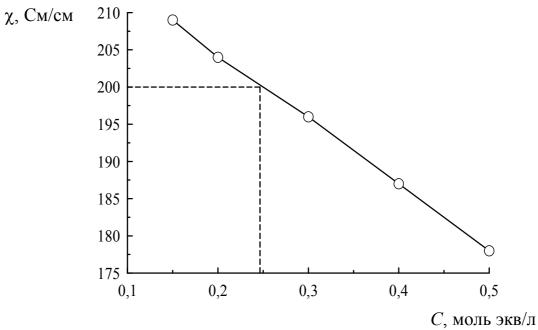


Рис. 7. Градуировочный график

Определим массовую концентрацию NaOH:

$$\rho^*$$
(NaOH) = C (1NaOH) · M (1NaOH) = 0,24 · 39,9971 = 9,5993 $\frac{\Gamma}{\pi}$.

3. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, ОСНОВАННЫЕ НА ПРИМЕНЕНИИ ЭЛЕКТРОЛИЗА

3.1. Вольтамперометрия

Пример 6 поможет Вам при решении задач № 61–63.

При полярографировании стандартных растворов меди (II) получили следующие результаты (табл. 9).

Таблица 9

$\rho^*(Cu^{2+})\cdot 10^3$, г/мл	0,5	1,0	1,5	2,0
h, mm	9,0	17,5	26,2	35,0

Навеску латуни массой 0,1200 г растворили, и раствор разбавили до 50,0 мл.

Вычислить массовую долю меди (II) в образце латуни, если высота волны на полярограмме оказалась равной 23,0 мм.

Решение. Строим градуировочный график в координатах: высота полярогафической волны (h) – концентрация растворов меди (II) (рис. 8). По графику находим $\rho^*(Cu^{2+}) = 1,24 \cdot 10^{-3}$ г/мл, соответствующую h = 23 мм.

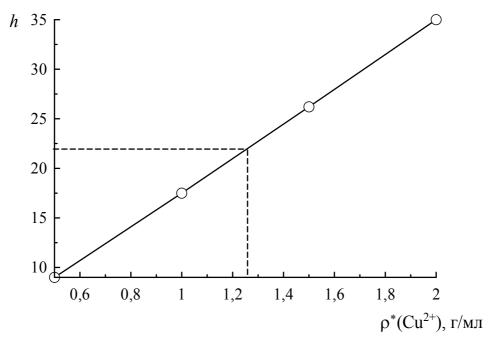


Рис. 8. Градуировочный график

Находим массу меди (II) в 50,0 мл раствора:

$$m = \rho * (Cu^{2+}) \cdot V = 1,24 \cdot 10^{-3} \cdot 50,0 = 0,0620 \text{ r.}$$

Рассчитываем массовую долю (%) меди в латуни

$$\omega_{\text{Cu}} = \frac{m_{\text{Cu}} \cdot 100\%}{m_{\text{CIIЛава}}} = \frac{0.0620 \cdot 100\%}{0.12} = 51.7\%.$$

Пример 7 поможет Вам при решении задач № 64-67.

Для определения кадмия в сплаве методом добавок навеску сплава массой 3,7460 г растворили в смеси кислот и полученный раствор разбавили до 250,0 мл. Аликвоту объемом 20,0 мл полярографировали и измерили высоту полярографической волны кадмия, она равна 18,5 мм. Другие компоненты сплава при условиях проведения анализа не мешали определению кадмия. После добавления в электролизер 5,00 мл 0,0300 М раствора CdSO₄ высота волны увеличилась до 23,5 мм.

Определить массовую долю (%) кадмия в сплаве.

Решение. Рассчитываем концентрацию кадмия (II) в аликвоте раствора по формуле метода добавок [4]:

$$C_{\text{Cd}^{2+}} = \frac{0,0300 \cdot 5,00 \cdot 18,5}{(20,0+5,0) \cdot (23,5-18,5)} = 0,0222 \text{ моль/л}.$$

В 250,0 мл раствора будет такая же концентрация, как в аликвоте 20,0 мл этого раствора.

Находим массу кадмия в растворе

$$m_{\text{Cd}^{2+}} = C_{\text{Cd}^{2+}} \cdot V_{\text{Cd}^{2+}} \cdot M_{\text{Cd}^{2+}} =$$

= 0,0222 · 0,250 · 112,411 = 0,6240 г.

Рассчитываем массовую долю (%) кадмия в сплаве

$$\omega_{\text{Cd}} = \frac{m_{\text{Cd}} \cdot 100\%}{m_{\text{CHIJABA}}} = \frac{0.624 \cdot 100\%}{3.746} = 16.7\%.$$

3.2. Амперометрическое титрование

Пример 8 поможет Вам при решении задач № 68–73.

Определить концентрацию кадмия (мг/л) в растворе, если при амперометрическом титровании 25,0 мл этого раствора раствором $K_4[Fe(CN)_6]$ с $T_{K_4[Fe(CN)_6]/Cd} = 0,00358$ г/мл получили следующие результаты (табл. 9).

$V_{ m титранта}, \ m MЛ$	0	0,20	0,40	0,50	1,00	1,50	2,00	2,50	3,00
I_d , мк A	75,0	75,0	75,0	75,0	120,0	165,0	210,0	255,0	300,0

Решение. Строим кривую амперометрического титрования (рис. 9) по данным, приведенным в табл. 9.

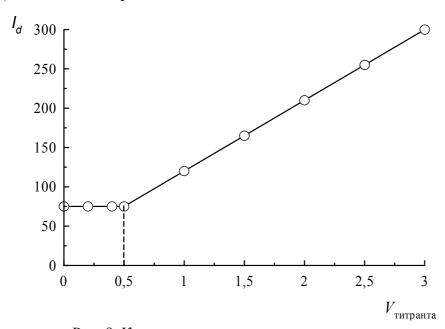


Рис. 9. Кривая амперометрического титрования

По кривой амперометрического титрования определяем объем титранта, пошедшего на титрование раствора: V = 0.5 мл.

Рассчитываем массу кадмия (II) в растворе:

$$m(\text{Cd}^{2+}) = T_{\text{K}_4[\text{Fe}(\text{CN})_6]/\text{Cd}} \cdot V = 0.00358 \cdot 0.5 = 0.00179 \text{ r} = 17.9 \text{ M}\text{C}.$$

Находим концентрацию кадмия (II) в растворе (мг/л)

$$\rho^*(Cd^{2+}) = \frac{m(Cd^{2+})}{V_{p-pa}} = 17,9/0,025 = 716 \text{ M}\Gamma/\pi$$
:

3.3. Электрогравиметрия

Пример 9 поможет Вам при решении задач № 74-77.

Навеску сплава массой 0,8456 г растворили и путем электролиза при силе тока 0,200 A за 20,0 мин выделили полностью на катоде кадмий. Вычислить массовую долю (%) кадмия в сплаве.

Решение. В соответствии с законом Фарадея

$$m_{\text{Cd}} = \frac{ItM_{\text{Cd}}}{Fn},$$

где m_{Cd} — масса выделенного кадмия, г; I — сила тока, A; t — время электролиза, с; M_{Cd} молярная масса = 112,411 г/моль; F — постоянная Фарадея F = 96500 Кл/моль; n — количество электронов, участвующих в электрохимическом процессе, определяемое на основании полуреакции:

$$Cd^{2+} + 2\bar{e} = Cd.$$

Рассчитываем массу кадмия

$$m_{\text{Cd}} = \frac{0,200 \cdot 20,0 \cdot 60 \cdot 112,411}{96500 \cdot 2} = 0,1400 \text{ }\Gamma.$$

Массовая доля (%) кадмия в сплаве равна

$$\omega_{\text{Cd}} = \frac{m_{\text{Cd}} \cdot 100\%}{m_{\text{CILIJABA}}} = \frac{0,140 \cdot 100\%}{0,8456} = 16,56\%.$$

3.4. Кулонометрия

Пример 10 поможет Вам при решении задач № 78-81.

Навеску пикриновой кислоты массой 0,0060 г растворили и количественно восстановили в кулонометрической ячейке по реакции

$$C_6H_2(OH)(NO_2)_3 + 18H^+ + 18\bar{e} = C_6H_2(OH)(NH_2)_3 + 6H_2O.$$

Количество затраченного электричества установили по количеству выделившегося в йодном кулонометре йода, на титрование которого потребовалось 21,15 мл 0,0200 н. раствора $Na_2S_2O_3$. Рассчитать массовую долю (%) пикриновой кислоты в навеске.

Решение. Количество вещества пикриновой кислоты эквивалентно количеству вещества йода, выделившегося в кулонометре и равно количеству вещества тиосульфата натрия. Следовательно, массу пикриновой кислоты можно рассчитать по формуле

$$m = C_{\text{Na}_2\text{S}_2\text{O}_3} \cdot V_{\text{Na}_2\text{S}_2\text{O}_3} \cdot \frac{1}{18} M_{\text{пикр. к-ты}} =$$

= 0.02 · 0.02115 · 229.082/18 = 0.00538 г.

Рассчитываем массовую долю (%) пикриновой кислоты в навеске

$$\omega = \frac{m_{\text{пикр K-Tы}} \cdot 100}{m_{\text{навески}}} = \frac{0,00538 \cdot 100}{0,0060} = 89,67\%.$$

Пример 11 поможет Вам при решении задач № 82-85.

Раствор $K_2Cr_2O_7$ объемом 25,00 мл оттитровали ионами железа (II), генерируемыми при силе тока 0,250 A в течение 35,0 мин. Конец реакции фиксировался по фотометрическим данным.

Определить массу $K_2Cr_2O_7$ (г) в растворе.

Решение. В данном случае использовался метод кулонометрического титрования. Количество электричества, пошедшее на генерацию титранта, эквивалентно количеству определяемого вещества. Поэтому используем уравнение Фарадея (см. пример 9).

Число электронов, участвующих в электрохимическом процессе, определяется на основании полурекции:

$$Cr_2O_7^{2-} + 14H^+ + 6\bar{e} = 2Cr^{3+} + 7H_2O;$$

 $n = 6.$

Рассчитываем массу К₂Сг₂О₇:

$$m_{\mathrm{K_2Cr_2O_7}} = \frac{0.250 \cdot 35.0 \cdot 60 \cdot 294.184}{96500 \cdot 6} = 0.2670 \ \Gamma.$$

4. ФОТОМЕТРИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Пример 12 поможет Вам при решении задач 106-107.

При спектрофотометрическом определении Ca^{2+} в виде комплексного соединения с комплексоном III оптическая плотность раствора, содержащего 0,022 мг Ca^{2+} в 50,0 мл органического растворителя, оказалась равной A=0,326. Измерения проводились в кювете с толщиной слоя l=5 см при определенных условиях. Вычислить значение молярного коэффициента поглощения комплекса.

Решение. Значение молярного коэффициента поглощения найдем из закона Бугера – Ламберта – Бера:

$$A = \varepsilon \cdot C \cdot l$$

где ε — молярный коэффициент поглощения; C — молярная концентрация, моль/л; l — толщина слоя (кюветы), см.

Рассчитаем концентрацию Ca²⁺ в 50,0 мл:

$$C(\mathrm{Ca}^{2+}) = \frac{m(\mathrm{Ca}^{2+})}{M(\mathrm{Ca}^{2+}) \cdot V} = \frac{0.0220 \cdot 10^{-3}}{40.08 \cdot 0.05} = 1.098 \cdot 10^{-5} \,\mathrm{моль} \,/\,\mathrm{л}\,.$$

Найдем значение молярного коэффициента поглощения:

$$\varepsilon = \frac{A}{C \cdot l} = \frac{0,326}{0,00001098 \cdot 5} = 5939,13 \frac{\pi}{\text{моль} \cdot \text{см}}.$$

Пример 13 поможет Вам при решении задач 108-109.

Для определения содержания Fe в анализируемом образце методом добавок навеску 0.3250 г растворили, перенесли в мерную колбу вместимостью 100.0 мл и довели объем раствора до метки. Для приготовления окрашенного раствора отобрали аликвоту 20.0 мл, добавили необходимые реактивы и довели объем раствора до 50.0 мл. Оптическая плотность исследуемого раствора и такого же раствора с добавкой 0.2 мг Fe равны $A_x = 0.250$ и $A_{x+ct} = 0.370$ соответственно. Рассчитать массовую долю (%) Fe в образце.

Решение. Для решения задачи воспользуемся формулой метода добавок [4]:

$$\frac{\rho^*_x}{\rho^*_{\text{ct}}} = \frac{A_x}{A_{x+ct} - A_x}.$$

Найдем концентрацию железа в стандартном $\rho^*_{ct.}$ и анализируемом ρ^*_x растворах:

$$\rho^*_{ct} = \frac{m}{V} = \frac{0.20 \cdot 10^{-3}}{0.05} = 0.004 \text{ г/л};$$

$$\rho^*_x = \frac{A_x \cdot \rho^*_{\text{ct}}}{A_{x+\text{ct}} - A_x} = \frac{0,250 \cdot 0,004}{0,370 - 0,250} = 0,00833 \,\text{г/л}.$$

В мерную колбу вместимостью 50,0 мл была помещена аликвота объемом 20,0 мл. По закону эквивалентов найдем концентрацию железа до разбавления:

$$\rho^* = \frac{0,00833 \cdot 50}{20} = 0,0208 \ \text{г/л} \ .$$

Рассчитаем массу железа, которая содержится в мерной колбе на 100,0 мл:

$$m = \rho^* \cdot V = 0.0208 \cdot 0.1 = 0.00208 \Gamma.$$

Определим массовую долю железа в навеске:

$$\omega = \frac{m_{\text{Fe}} \cdot 100\%}{m_{\text{Habecky}}} = \frac{0,00208 \cdot 100\%}{0,3250} = 0,64\%.$$

Пример 14 поможет Вам при решении задач 110-111.

Рассчитать концентрацию (моль/л) ${\rm MnO_4^-}$ и ${\rm Cr_2O_7^{2-}}$ при их совместном присутствии в растворе по следующим данным спектрофотометрических измерений (табл. 10).

Таблица 10

Ион	λ, нм	$A_{смеси}$	$\varepsilon(\mathrm{MnO_4^-})$	$\varepsilon(\operatorname{Cr_2O_7^{2-}})$
MnO_4^-	550	0,71	2100	0
Cr ₂ O ₇ ²⁻	430	0,42	500	220

Решение. Определение ${\rm MnO_4^-}$ и ${\rm Cr_2O_7^{2-}}$ в смеси основано на законе аддитивности светопоглощения. При длине волны 550 нм поглощает только ${\rm MnO_4^-}$, а при 430 нм поглощают ${\rm MnO_4^-}$ и ${\rm Cr_2O_7^{2-}}$. Следовательно, при 550 нм:

$$A_{\text{смеси},550} = A(\text{MnO}_4^-)_{550};$$

при 430 нм:

$$A_{\text{смеси,430}} = A(\text{MnO}_4^-)_{430} + A(\text{Cr}_2\text{O}_7^{2-})_{430}.$$

Согласно закону Бугера – Ламберта – Бера [4], данную систему можно записать

$$\begin{split} A_{\text{смеси,550}} &= \epsilon (\text{MnO}_4^-)_{550} \cdot C_{\text{MnO}_4^-} \cdot l; \\ A_{\text{смеси,430}} &= \epsilon (\text{MnO}_4^-)_{430} \cdot C_{\text{MnO}_4^-} \cdot l + \epsilon (\text{Cr}_2 \text{O}_7^{2-})_{430} \cdot C_{\text{Cr}_2 \text{O}_7^{2-}} \cdot l. \end{split}$$

В условии задачи не дано значение толщины слоя l, поэтому примем данное значение равным 1. Подставим численные значения и решим полученную систему уравнений:

$$0.71 = 2100 \cdot C(MnO_4^-);$$

 $0.42 = 500 \cdot C(MnO_4^-) + 220 \cdot C(Cr_2O_7^{2-}).$
 $C(MnO_4^-) = 0.0003381 \text{ M};$
 $C(Cr_2O_7^{2-}) = 0.001140 \text{ M}.$

Пример 15 поможет Вам при решении задач 112–120.

Для приготовления стандартного раствора навеску $ZrOCl_2 \cdot 8H_2O$ массой 0,3533 г поместили в колбу вместимостью 100,0 мл, растворили в соляной кислоте и довели до метки. В мерные колбы вместимостью 50,0 мл поместили 1,00; 1,20; 1,05; 1,70 и 2,00 мл этого раствора, добавили реактивы и довели до метки. Измерения проводили методом дифференциальной фотометрии, для чего поместили первый раствор в кювету сравнения и измерили оптические плотности остальных растворов относительно этого раствора. Получили величины $A_{\text{отн}}$ для второго, третьего, четвертого и пятого растворов (табл. 11).

Навеску циркониевого сплава массой 0,1242 г растворили в смеси кислот в колбе вместимостью 100,0 мл и довели до метки. Аликвоту 2,0 мл поместили в мерную колбу вместимостью 50,0 мл, добавили реактивы и довели раствор до метки дистиллированной водой. Измерили относительную оптическую плотность этого раствора в тех же условиях, как и при построении градуировочного графика, получили

 $A_{\text{отн},x} = 0,38$. Вычислить массовую долю (%) циркония в сплаве.

Таблица 11

V_n , мл	1,20	1,50	1,70	2,00
$A_{ m OTH}$	0,100	0,235	0,330	0,470

Решение. Найдем концентрацию Zr в 500,0 мл раствора.

$$C(Zr) = \frac{m(ZrOCl_2 \cdot 8H_2O)}{M(ZrOCl_2 \cdot 8H_2O) \cdot V} = \frac{0,3533}{322,130 \cdot 0,1} = 0,0110 \text{ M}.$$

Найдем концентрации растворов, которые использовались для построения градуировочного графика:

$$C_1 = \frac{C_2 \cdot V_2}{V_1} = \frac{0.0110 \cdot 1.20}{50} = 0.000264 \,\mathrm{M}.$$

Аналогичным образом рассчитываем остальные концентрации. Результаты расчета сводим в табл. 12.

Таблица 12

V_n , мл	1,20	1,50	1,70	2,00	
$C \cdot 10^4$, M	$C \cdot 10^4$, M 2,64		3,74	4,40	
$A_{ m OTH}$	0,100	0,235	0,330	0,470	

Построим градуировочный график (рис. 10).

На оси ординат откладываем $A_{\text{отн}} = 0,380$, проводим линию до пересечения с прямой, опускаем перпендикуляр на ось абсцисс и находим концентрацию стандарта в анализируемом растворе (50,0 мл) – $C = 3,95 \cdot 10^{-4}$ М. По закону эквивалентов найдем концентрацию до разбавления:

$$C = \frac{50,0 \cdot 0,000395}{2.00} = 0,009875 \text{ M}.$$

Концентрация циркония в аликвоте (2,0 мл) и в растворе объемом 100,0 мл одинаковая.

Найдем массу циркония в 100,0 мл раствора:

$$m = C_{Zr} \cdot M_{Zr} \cdot V = 0,009875 \cdot 91,224 \cdot 0,1 = 0,0901 \,\mathrm{r}.$$

Найдем его массовую долю:

$$w_{\rm Zr} = \frac{m_{\rm Zr} \cdot 100\%}{m_{\rm habeckij}} = \frac{0.0901 \cdot 100\%}{0.1242} = 72.54\%.$$

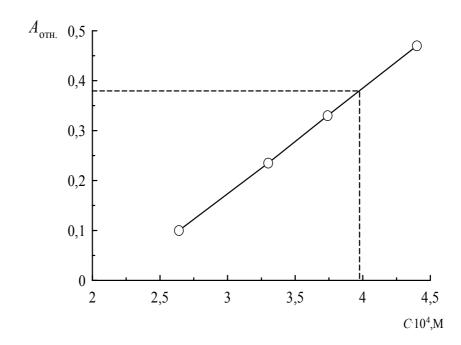


Рис. 10. Градуировочный график

Пример 16 поможет Вам при решении задач 121–129.

Навеску 1,5432 г образца после растворения поместили в мерную колбу вместимостью 200,0 мл, добавили необходимые реагенты для получения окрашенного раствора и довели объем до метки дистиллированной водой. Затем взяли аликвоту 5,0 мл и оттитровали 0,05 н. раствором ЭДТА при определенной длине волны.

Построить кривую титрования (табл. 13) и определить массовую долю Zn в образце (%).

Таблица 13

<i>V</i> (ЭДТА), мл	1,9	2,1	2,3	2,5	2,7	2,9	3,1
A	0,70	0,70	0,72	0,98	1,23	1,25	1,25

Решение. Запишем уравнение реакции

$$Zn^{2+} + Na_2H_2Y = ZnNa_2Y + 2H^+.$$

Факторы эквивалентности у цинка и у ЭДТА одинаковые и равны $\frac{1}{2}$, так как при реакции выделяется два иона H^+ .

Построим кривую титрования (рис. 11). По кривой титрования находим точку эквивалентности [1] и соответствующий ей объем V(ЭДТА) = 2,5 мл.

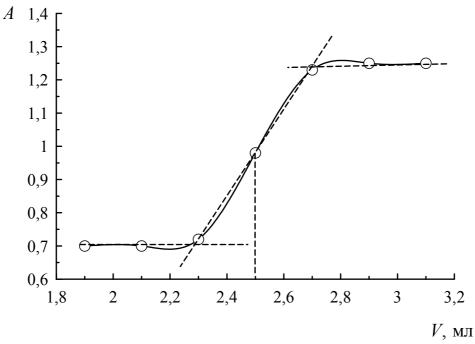


Рис. 11. Кривая титрования

Массу цинка (II) в аликвоте найдем из закона эквивалентов:

$$\frac{m(\mathrm{Zn}^{2+})}{M(\frac{1}{2}\mathrm{Zn}^{2+})} = C(\frac{1}{2}\mathrm{Na}_2\mathrm{H}_2\mathrm{Y}) \cdot V;$$

$$m = 0.0500 \cdot 0.0025 \cdot 32.690 = 0.00409 \text{ r.}$$

Для определения массы ${\rm Zn}^{2^+}$ в мерной колбе составим пропорцию:

$$0,00409$$
 г содержится в 5,0 мл x г содержится в 200,0 мл $x = 0,00409 \cdot 200,0 / 5,0 = 0,1636$ г.

Массовая доля (%) цинка в образце составит

$$w_{\rm Zn} = \frac{m_{\rm Zn} \cdot 100\%}{m_{\rm навески}} = \frac{0,1636 \cdot 100\%}{1,5432} = 10,59\%.$$

5. ЭМИССИОННАЯ ФОТОМЕТРИЯ ПЛАМЕНИ

Пример 17 поможет Вам при решении задач 130–144.

Для определения калия методом градуировочного графика приготовили серию стандартных растворов КСl и провели их фотометрирование в пламени. Результаты представлены в табл. 14.

Таблица 14 **Результаты фотометрирования стандартных растворов**

ρ* (К ⁺), мг/л	1,0	2,0	4,0	6,0	8,0	10,0
<i>I</i> , мкА	12	23	50	71	92	122

Навеску образца соли 0,2548 г перенесли в мерную колбу вместимостью 100,0 мл, растворили в дистиллированной воде и довели объем до метки. Аликвоту полученного раствора 10,0 мл поместили в колбу вместимостью 250,0 мл и довели до метки дистиллированной водой. Полученный раствор фотометрировали при тех же условиях, что и стандартные растворы, отсчет составил 82 мкА. Определить содержание калия в образце (%).

Решение. Построим градуировочный график (рис. 12).

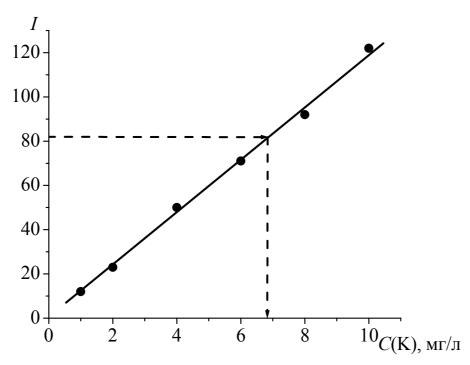


Рис. 12. Градуировочный график

По графику определим концентрацию калия, соответствующую отсчету 82 мкА, – она составляет 6,8 мг/л.

Так как исходный раствор соли перед измерением был разбавлен, то с учетом разбавления:

$$\rho^*_1 \cdot V_1 = \rho^*_2 \cdot V_2;$$
 $\rho^*_{\text{ucx}}(K^+) \cdot 10,0 = 6,8 \cdot 250,0;$
 $\rho^*_{\text{ucx}}(K^+) = 170,0 \text{ MG/JI}.$

Рассчитаем массу калия в исходном растворе (100,0 мл = 0,1000 л):

$$m(K) = \rho_{\text{ucx}}^*(K^+) \cdot V_{\text{p-pa}} = 170.0 \cdot 0.1000 = 17.0 \text{ (MF)}.$$

Это количество калия (17,0 мг = 0,0170 г) содержалось в растворенной навеске. Тогда содержание калия в образце:

$$\omega(K) = \frac{m(K)}{m_{\text{навески}}} \cdot 100\%$$
;
 $\omega(K) = \frac{0.0170}{0.2548} \cdot 100\% = 6.67\%.$

Пример 18 поможет Вам при решении задач 145–149.

Для определения калия в удобрении методом двух добавок навеску удобрения 0,2146 г перенесли в мерную колбу объемом 200,0 мл, растворили в дистиллированной воде и довели объем до метки. В три мерные колбы вместимостью 50,0 мл поместили по 15,0 мл этого раствора. Во вторую и третью колбы добавили соответственно 5,0 и 10,0 мл стандартного раствора, полученного растворением 0,1525 г КС1 в 100,0 мл дистиллированной воды. Все растворы довели до метки и измерили интенсивность излучения калия в пламени. Результаты фотометрирования приведены в табл. 15.

Таблица 15 **Результаты фотометрирования**

I_{x}	$I_{x+c_{\mathrm{T}1}}$	$I_{x+c_{T}2}$
38,0	62,5	87,0

Определить массовую долю (%) калия в удобрении.

Решение. Рассчитаем концентрацию KCl в стандартном растворе (моль/л) с учетом молярной массы M(KCl) = 74,5513 г/моль и объема раствора (100,0 мл = 0,1000 л):

$$C^{\circ}(KCl) = \frac{m(KCl)}{M(KCl) \cdot V_{p-pa}};$$

$$C^{\circ}(\text{KCl}) = \frac{0,1525}{74,5513 \cdot 0,1000} = 0,02046 \text{ моль/л.}$$

Рассчитаем концентрации добавки в фотометрируемых растворах с учетом разбавления до 50,0 мл:

$$\begin{split} &C_{\text{ctl}} = \frac{C^{\text{o}}(\text{KCl}) \cdot V_{\text{ctl}}}{50,0} \ ; \\ &C_{\text{ctl}} = \frac{0,02046 \cdot 5,0}{50,0} = \ 2,046 \cdot 10^{-3} \ \text{моль/л}. \\ &C_{\text{ct2}} = \frac{C^{\text{o}}(\text{KCl}) \cdot V_{\text{ct2}}}{50,0} \ ; \\ &C_{\text{ct2}} = \frac{0,02046 \cdot 10,0}{50,0} \ = 4,092 \cdot 10^{-3} \ \text{моль/л}. \end{split}$$

Построим график в координатах $I - C_{\text{добавки}}$ (рис. 13).

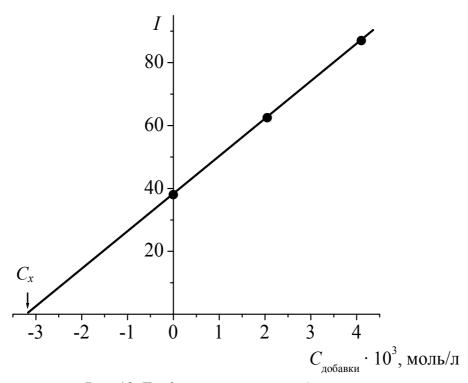


Рис. 13. График метода двух добавок

Отрезок, отсекаемый прямой на оси абсцисс, соответствует концентрации KCl в разбавленном анализируемом растворе. Таким образом, $C_x(\text{KCl}) = 3,201 \cdot 10^{-3}$ моль/л.

Так как исходный раствор, приготовленный из навески удобрения, был разбавлен для измерений, то рассчитаем его концентрацию с учетом проведенного разбавления:

$$C_{\text{исх}}(\text{KCl}) = \frac{C_{\text{x}}(\text{KCl}) \cdot 50,0}{15,0};$$
 $C_{\text{исх}}(\text{KCl}) = \frac{3,201 \cdot 10^{-3} \cdot 50,0}{15,0} = 0,01067 \text{ моль/л.}$

Так как $C(K^+) = C(KCl)$, то с учетом исходного объема раствора (200,0 мл = 0,2000 л) и молярной массы калия (39,0983 г/моль) находим массу калия в растворе:

$$m(K) = C_{\text{ucx}}(K^{+}) \cdot V_{\text{p-pa}} \cdot M(K^{+});$$

 $m(K) = 0.01067 \cdot 0.2000 \cdot 39.0983 = 0.0834 \text{ r.}$

Соответственно, такая же масса калия в навеске удобрения. Тогда содержание калия в удобрении:

$$\omega(K) = \frac{m(K)}{m_{\text{навески}}} \cdot 100\% ;$$

$$\omega(K) = \frac{0.0834}{0.2146} \cdot 100\% = 38.88\%.$$

Пример 19 поможет Вам при решении задач 150-159.

При определении содержания марганца в легированной стали применили метод сравнения. Навеску стали 4,9912 г растворили в кислоте, перенесли раствор в мерную колбу вместимостью 250,0 мл и довели объем раствора до метки. Для измерений отобрали аликвоту этого раствора 10,0 мл, поместили в колбу вместимостью 50,0 мл и довели объем до метки дистиллированной водой. При фотометрировании в высокотемпературном пламени интенсивность излучения марганца составила 78 ед. Интенсивность излучения стандартного $3,000 \cdot 10^{-4}$ М раствора $MnCl_2$ составила 54 ед. Определить содержание марганца в стали (%).

Решение. Так как зависимость интенсивности излучения от концентрации раствора линейна: $I = k \cdot C$, то для анализируемого и стандартного растворов можно соответственно записать:

$$I_x = k \cdot C_x;$$

$$I_{ct} = k \cdot C_{ct}.$$

Разделив первое уравнение на второе, получим:

$$\frac{I_x}{I_{\rm ct}} = \frac{C_x}{C_{\rm ct}}.$$

Выразим C_x :

$$C_x = \frac{I_x \cdot C_{\text{ct}}}{I_{\text{ct}}}.$$

Подставив данные из условия, получим:

$$C(\mathrm{Mn}^{2^+}) = \frac{78 \cdot 3,000 \cdot 10^{-4}}{54} \ = 4,333 \cdot 10^{-4} \,\mathrm{моль/л}.$$

Так как исходный раствор, приготовленный из навески стали, перед измерением был разбавлен, найдем его концентрацию с учетом разбавления:

$$C_1 \cdot V_1 = C_2 \cdot V_2;$$
 $C_{\text{ucx}}(\text{Mn}^{2+}) \cdot 10,0 = 4,333 \cdot 10^{-4} \cdot 50,0;$
 $C_{\text{ucx}}(\text{Mn}^{2+}) = 2,166 \cdot 10^{-3} \text{ моль/л}.$

Рассчитаем массу марганца в исходном растворе (250,0 мл = 0,2500 л) с учетом молярной массы марганца (54,938 г/моль):

$$m(Mn) = C_{\text{ucx}}(Mn^{2+}) \cdot V_{\text{p-pa}} \cdot M(Mn);$$

 $m(Mn) = 2,166 \cdot 10^{-3} \cdot 0,2500 \cdot 54,938 = 0,0297 \text{ r.}$

Эта масса марганца содержалась в исходной навеске стали. Рассчитаем содержание марганца в стали:

$$\omega(\text{Mn}) = \frac{m(\text{Mn})}{m_{\text{навески}}} \cdot 100\% ;$$

$$\omega(\text{K}) = \frac{0.0297}{4.9912} \cdot 100\% = 0.60\%.$$

6. ТУРБИДИМЕТРИЯ И НЕФЕЛОМЕТРИЯ

Пример 20 поможет Вам при решении задач 169–171.

Для определения Sr (II) в образце методом фототурбидиметрического титрования навеску 0,5369 г анализируемого вещества поместили в мерную колбу вместимостью 100,0 мл и довели объем до метки дистиллированной водой. Затем взяли аликвоту 15,0 мл, добавили необходимые реагенты и оттитровали 0,0500 М (NH₄)₂C₂O₄.

Построить кривую титрования и определить массовую долю Sr (II) (%) в образце по результатам измерений, приведенным в табл. 16.

Таблица 16

$V((NH_4)_2C_2O_4)$, мл	1,5	2,5	3,5	4,5	5,5	6,5	7,5
A	0,3	0,4	0,5	0,6	1,1	1,7	2,2

Решение. Запишем уравнение реакции

$$Sr^{2+} + C_2O_4^{2-} = Sr C_2O_4 \downarrow$$

Построим кривую титрования (рис. 14).

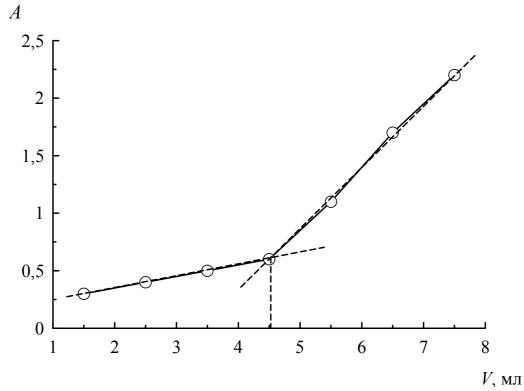


Рис. 14. Кривая титрования

По пересечению касательных, проведенных к прямолинейным участкам кривой титрования, находим точку эквивалентности и соответствующий ей объем титранта V = 4,55 мл.

Концентрации анализируемых веществ рассчитаем из закона эквивалентов. Поскольку $f_{\text{экв}}(\mathrm{Sr}^{2^+}) = f_{\text{экв}}(\mathrm{C_2O_4^{2^-}}) = \frac{1}{2}$, можно воспользоваться молярной концентрацией

$$C(\mathrm{Sr}^{2+}) = \frac{C((\mathrm{NH}_4)_2 \,\mathrm{C}_2 \mathrm{O}_4) \cdot V_{\mathrm{титранта}}}{V_{\mathrm{аликвоты}}} = \frac{0.05 \cdot 4.55}{15} = 0.01517 \,\mathrm{M}.$$

Найдем массу анализируемого вещества:

$$m = C_{\operatorname{Sr}^{2+}} \cdot M_{\operatorname{Sr}^{2+}} \cdot V;$$

$$m = 0.01517 \cdot 87.62 \cdot 0.1 = 0.1329 \text{ }\Gamma.$$

Массовая доля (%) стронция в образце составит

$$\omega_{\text{Sr}^{2+}} = \frac{m_{\text{Sr}^{2+}} \cdot 100\%}{m_{\text{навески}}} = \frac{0,1329 \cdot 100\%}{0,5369} = 24,75\%.$$

Пример 21 поможет Вам при решении задач 172–180.

При турбидиметрическом определении ${\rm Mg}^{2+}$ в мерной колбе на 50,0 мл растворили 0,1997 г ${\rm MgCl_2}$ в воде и раствор довели до метки. Для построения градуировочного графика отобрали объемы V_n этого раствора, которые после добавления растворов желатина и ${\rm H_3PO_4}$ довели водой до 100,0 мл, а затем измерили оптические плотности полученных дисперсных систем (табл. 17).

Таблица 17

V_n , мл	2	4	6	8
A	0,25	0,35	0,45	0,56

Навеску природного объекта массой 35,0269 г обработали, перенесли в мерную колбу вместимостью 1,0 л. Аликвоту 10,0 мл анализируемого раствора разбавили до 250,0 мл, затем 5,00 мл этого раствора перенесли в колбу вместимостью 100,0 мл и приготовили в ней суспензию. Значение оптической плотности данного раствора $A_x = 0,38$. Определить концентрацию (г/л) и массовую долю (%) Mg^{2+} в анализируемом растворе.

Решение. Найдем концентрацию Mg^{2+} в 50,0 мл воды:

$$C(Mg^{2+}) = \frac{m(MgCl_2)}{M(MgCl_2) \cdot V} = \frac{0.1977}{95.211 \cdot 0.05} = 0.04153 \text{ M}.$$

Найдем концентрации стандартных растворов:

$$C_1 = \frac{C_2 \cdot V_2}{V_1} = \frac{0.04153 \cdot 2.0}{100.0} = 8.394 \cdot 10^{-4} \text{ M}.$$

Аналогичным образом рассчитываем остальные концентрации. Результаты расчета сводим в табл. 18.

Таблица 18

V_n , мл	2	4	6	8
$C \cdot 10^4$, M	8,394	16,79	25,18	33,58
\overline{A}	0,25	0,35	0,45	0,56

Построим градуировочный график (рис. 15).

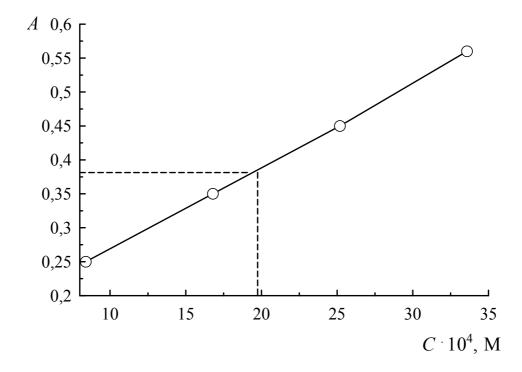


Рис. 15. Градуировочный график

На оси ординат откладываем $A_x = 0.38$, проводим линию до пересечения с прямой, опускаем перпендикуляр на ось абсцисс и нахо-

дим концентрацию анализируемого раствора в объеме 100,0 мл: C = 0,001931 М. По закону эквивалентов найдем концентрацию в растворе до разбавления (5,0 мл):

$$C = \frac{100,0 \cdot 0,001931}{5,0} = 0,03862$$
 M.

Рассчитаем концентрацию магния (II) в аликвоте (10,0 мл) исследуемого раствора:

$$C = \frac{250,0 \cdot 0,03862}{10,0} = 0,9655 \text{ M}.$$

Найдем массовую концентрацию Mg (II) в исходном растворе:

$$\rho^* = C \cdot M = 0.9655 \cdot 24{,}305 = 23{,}67 \text{ г/л}.$$

Найдем массу магния в 1 л раствора:

$$m = \rho^* \cdot V = 23,67 \cdot 1 = 23,67 \,\Gamma.$$

Найдем массовую долю магния:

$$\omega = \frac{m(\text{Mg}^{2+}) \cdot 100\%}{m_{\text{навески}}} = \frac{23,67 \cdot 100\%}{35,0269} = 67,58\%.$$

7. РЕФРАКТОМЕТРИЯ

Пример 22 поможет Вам при решении задач № 181–183.

Определить нормальную концентрацию муравьиной кислоты, если показатель преломления 12,21%-го раствора ее равен 1,3405, а показатель преломления исследуемого раствора равен 1,3375, с учетом того, что между концентрацией и показателем преломления в этом интервале существует прямолинейная зависимость $(n_{\rm H_2O}=1,3330)$.

Решение. Так как зависимость между показателем преломления и концентрацией прямолинейна, в данном случае можно использовать для расчетов рефрактометрический фактор.

Рассчитаем рефрактометрический фактор, приняв в качестве n_0 показатель преломления воды:

$$F = \frac{1,3405 - 1,3330}{12,21} = 0,000614 \%^{-1}.$$

Рассчитываем процентную концентрацию муравьиной кислоты.

$$\omega_x = \frac{(n_x - n_0)}{F} = \frac{(1,3375 - 1,3330)}{0,000614} = 7,33\%.$$

Находим по справочнику плотность 7,33%-го раствора муравьиной кислоты ρ =1,1776 г/мл.

Рассчитываем массу 1 л раствора

$$m = \rho \cdot V = 1,1776 \cdot 1000 = 1177,6 \text{ }\Gamma.$$

В одном литре раствора содержится муравьиной кислоты:

$$m = \frac{m \cdot \omega}{100} = \frac{7,33 \cdot 1177,6}{100} = 86,3 \text{ r.}$$

Рассчитываем нормальную концентрацию муравьиной кислоты

$$C = m / M = 86,3 / 46,0257 = 1,875$$
 моль-экв/л.

Пример 23 поможет Вам при решении **задач № 184–186 и № 194–195**.

Для определения концентрации раствора этилового спирта в воде были определены показатели преломления стандартных растворов (табл. 19).

Таблица 19

С, г/100 мл	5	10	15	20	25
n_D^{20}	1,3362	1,3396	1,3433	1,3470	1,3504

Показатель преломления исследуемого раствора составил 1,3450. Рассчитать молярную концентрацию этилового спирта.

Решение. Строим градуировочный график в координатах: показатель преломления (n) – концентрация спирта в растворе (рис. 16).

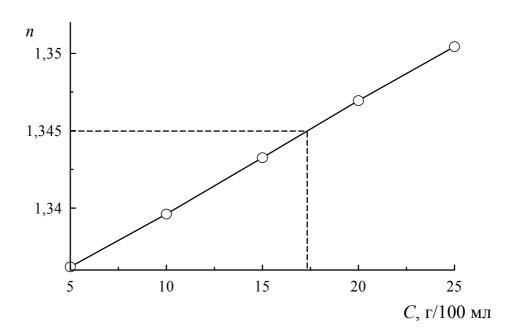


Рис.16. Зависимость показателя преломления этилового спирта от концентрации

По графику находим C_x = 17 г/100 мл, или 170 г/л. Рассчитываем молярную концентрацию этилового спирта.

$$C = \rho*/M = 170/46,0214 = 3,694 M.$$

Пример 24 поможет Вам при решении задачи № 187.

Найти концентрацию (мас.%) нитроэтана в смеси с нитробензолом, если удельная рефракция смеси 0.255 см³/г, плотности $\rho(C_2H_5NO_2)=1,038$ и $\rho(C_6H_5NO_2)=1,1930$ г/см³; а показатели преломления $n(C_2H_5NO_2)=1,3902$ и $n(C_6H_5NO_2)=1,5526$.

Решение. Для решения задачи воспользуемся правилом аддитивности рефракций.

$$r_{\text{cmecu}} = r_1 \cdot \omega_1 + r_2 \cdot \omega_2$$

где r_1 и r_2 – удельные рефракции нитроэтана и нитробензола; ω_1 и ω_2 – массовые доли нитроэтана и нитробензола.

Поскольку

$$\omega_1 + \omega_2 = 1$$
,

TO

$$r_{\text{cmecu}} = r_1 \cdot \omega_1 + r_2(1 - \omega_1). \tag{1}$$

Удельную рефракцию каждого компонента смеси рассчитаем по формуле

$$r = \frac{n^2 - 1}{n^2 + 2} \cdot \frac{1}{\rho}.$$

$$r_{\text{C}_2\text{H}_5\text{NO}_2} = \frac{1,3902^2 - 1}{1,3902^2 + 2} \cdot \frac{1}{1,038} = 0,2285 \text{ cm}^3/\Gamma;$$

$$r_{\text{C}_6\text{H}_5\text{NO}_2} = \frac{1,5526^2 - 1}{1,5526^2 + 2} \cdot \frac{1}{1,193} = 0,2680 \text{ cm}^3/\Gamma.$$

Подставив величины удельных рефракций в формулу (1)

$$0.255 = 0.2285 \cdot \omega_1 + 0.2680 \cdot (1 - \omega_1)$$

рассчитываем массовую долю компонентов:

$$\omega_1 = 0.329$$
; $\omega_2 = 1 - \omega_1 = 0.671$.

Рассчитываем процентную концентрацию компонентов как $\omega \cdot 100$. Процентное содержание нитроэтана составляет 32,9%, а нитробензола 67,1%.

Задача № 188 решается по тем же формулам, как и задача № 187, но здесь необходимо по составу раствора рассчитать удельную рефракцию.

Пример 25 поможет Вам при решении задачи № 189–193.

В табл. 20 приведены показатели преломления растворов $NaNO_3$ при различных концентрациях.

Таблица 20

C, г/100 мл	2	4	6	8	10
n	1,3354	1,3376	1,3397	1,3418	1,3439

Рассчитайте рефрактометрические факторы, усредните и определите концентрацию вещества (моль/л) в растворе, если его показатель преломления равен 1,3385.

Решение. Рассчитаем рефрактометрические факторы, приняв в качестве n_0 показатель преломления воды, равный 1,3330:

$$F_1 = \frac{1,3354 - 1,3330}{2} = 0,0012;$$

$$F_2 = \frac{1,3376 - 1,3330}{4} = 0,00115;$$

$$F_3 = \frac{1,3397 - 1,3330}{6} = 0,00112;$$

$$F_4 = \frac{1,3418 - 1,3330}{8} = 0,00111;$$

$$F_5 = \frac{1,3439 - 1,3330}{10} = 0,00109.$$

Рассчитаем среднее значение рефрактометрического фактора

$$F_{\rm cp} = \frac{0,0012 + 0,00115 + 0,0112 + 0,0011 + 0,00109}{5} = 0,00113 \,.$$

Рассчитаем концентрацию вещества в растворе:

$$C = \frac{1,3385 - 1,3330}{0,00113} = 4,87 \ \Gamma/100 \ \text{мл}.$$

Рассчитываем молярную концентрацию NaNO₃:

$$C = \frac{C \cdot 10}{M_{\text{NaNO}_3}} = \frac{4,87 \cdot 10}{84,9947} = 0,573 \text{ моль/л.}$$

8. МЕТОДЫ РАЗДЕЛЕНИЯ И КОНЦЕНТРИРОВАНИЯ

8.1. Ионный обмен

Пример 26 поможет Вам при решении задач 196, 200-202.

Для определения примесей в загрязненной соли КС1 навеску 1,3551 г перенесли в мерную колбу вместимостью 200,0 мл, растворили в дистиллированной воде и довели объем до метки. Для анализа отобрали аликвоту 10,0 мл и пропустили через колонку с анионитом в ОН-форме. Элюат оттитровали 0,1000 н. раствором НС1. Определить массовую долю примесей в соли, если на титрование элюата израсходовано 8,3 мл раствора НС1.

Решение. При пропускании хлорида калия через слой анионообменника ROH на границе фаз протекает ионообменная реакция

$$KCl + ROH \leftrightarrow KOH + RCl$$
,

в результате образуется щелочь КОН, количество которой эквивалентно количеству исходной соли:

$$n(1\text{KOH}) = n(1\text{KCl});$$

 $C(1\text{KOH}) \cdot V(1\text{KOH}) = C(1\text{KCl}) \cdot V(1\text{KCl}).$

По результатам титрования можно найти n(1 KOH) в элюате. При титровании протекает реакция

$$HC1 + KOH = KC1 + H_2O$$
.

В соответствии с законом эквивалентов:

$$n(1\text{KOH}) = n(1\text{HCl}) = C(1\text{HCl}) \cdot V(1\text{HCl}).$$

Факторы эквивалентности HCl, KOH и KCl равны 1, а молярные концентрации соответствуют нормальным.

Таким образом,
$$C(KCl) \cdot V(KCl) = C(HCl) \cdot V(HCl)$$
,

$$C(KCl) = \frac{C(HCl) \cdot V(HCl)}{V(KCl)};$$

$$C(KCl) = \frac{0,1000 \cdot 8,3}{10,0} = 0,0830$$
 моль/л.

Macca KCl в исследуемом растворе:

$$m(KCl) = C(KCl) \cdot V_{p-pa} \cdot M(KCl).$$

Так как
$$M(KC1) = 74,5513$$
 г/моль, $V_{p-pa} = 200,0$ мл = 0,2000 л, то:

$$m(KCl) = 0.0830 \cdot 0.2000 \cdot 74,5513 = 1.2376 \text{ r.}$$

Соответственно, масса примесей в исходной навеске:

$$m_{\text{пр}} = m_{\text{нав}} - m(\text{KCl}) = 1,3551 - 1,2376 = 0,1175 \text{ г.}$$

Рассчитаем массовую долю примесей в соли:

$$\omega_{\text{пр}} = \frac{m_{\text{пр}}}{m_{\text{нав}}} \cdot 100\%;$$

$$\omega_{\text{пр}} = \frac{0.1175}{1.3551} \cdot 100\% = 8,67\%.$$

Пример 27 поможет Вам при решении задач 197–202.

К навеске набухшего катионита в Н⁺-форме (2,5 г в пересчете на сухой ионит), обменная емкость которого составляет 3,6 ммоль экв/г, прилили 100,0 мл 0,06000 M раствора CuSO₄. Определить концентрацию ионов Cu²⁺ в растворе после установления равновесия.

Решение. Запишем равновесие ионного обмена:

$$Cu^{2+} + 2RH \leftrightarrow 2H^{+} + R_{2}Cu$$
.

 $Cu^{2+} + 2RH \leftrightarrow 2H^{+} + R_{2}Cu$. Так как ион Cu^{2+} эквивалентен 2 ионам H^{+} , то $f_{3KB}(Cu^{2+}) = \frac{1}{2}$. Переведем молярную концентрацию в нормальную:

$$C(\frac{1}{2} \text{Cu}^{2+}) = \frac{C(\text{Cu}^{2+})}{\frac{1}{2}} = 2 \cdot C(\text{Cu}^{2+});$$

$$C(\frac{1}{2} \text{ Cu}^{2+}) = 2 \cdot 0,06000 = 0,1200 \text{ моль экв/л.}$$

Рассчитаем количество моль эквивалентов ионов Cu²⁺ в исходном растворе (100,0 мл = 0,1000 л):

$$n(\frac{1}{2} \text{ Cu}^{2+}) = C(\frac{1}{2} \text{ Cu}^{2+}) \cdot V_{\text{p-pa}};$$

 $n(\frac{1}{2} \text{ Cu}^{2+}) = 0,1200 \cdot 0,1000 = 0,0120$ моль экв (12,0 ммоль экв).

Так как 1 г сухого ионита обменивает 3,6 ммоль экв ионов, то 2,5 г ионита обменяют $2,5 \cdot 3,6 = 9,0$ ммоль экв ионов.

После установления равновесия в растворе останется:

$$n_{\text{ост}}(\frac{1}{2} \text{ Cu}^{2+}) = 12,0-9,0=3,0$$
 ммоль экв = $3,0\cdot 10^{-3}$ моль экв. Соответственно, концентрация ионов Cu^{2+} составит:

$$C(\frac{1}{2} \text{ Cu}^{2+}) = \frac{n_{\text{ост}}(\frac{1}{2} \text{Cu}^{2+})}{V_{\text{p-pa}}};$$

$$C(\frac{1}{2} \text{ Cu}^{2+}) = \frac{3.0 \cdot 10^{-3}}{0.1000} = 3.0 \cdot 10^{-2} \text{ моль экв/л};$$

$$C(\text{Cu}^{2+}) = \frac{1}{2} \cdot 3.0 \cdot 10^{-2} = 0.0150 \text{ моль/л}.$$

Пример 28 поможет Вам при решении задачи 203.

Через колонку, содержащую 4,0 г катионита в H⁺-форме, пропустили 150,0 мл 0,05000 M FeCl₃. Выходящий из колонки элюат собирали порциями по 25,0 мл, обрабатывали раствором KCNS в присутствии HNO₃ для получения окрашенных комплексов и фотометрически определяли концентрацию железа (III) в элюате, моль/л. Результаты определения приведены в табл. 21. Рассчитать полную динамическую обменную емкость катионита (ПДОЕ) по железу.

Таблица 21 Результаты определения концентрации железа в элюате

№ порции	1	2	3	4	5	6
$C(\mathrm{Fe}^{3+}), \mathrm{M}$	0	0	0,004	0,03	0,05	0,05

Решение. Запишем равновесие ионного обмена:

$$Fe^{3+} + 3RH \leftrightarrow 3H^{+} + R_{3}Fe$$
.

Так как ион Fe^{3+} эквивалентен 3 ионам H^+ , то $f_{9KB}(Fe^{3+}) = \frac{1}{3}$. Переведем молярную концентрацию в нормальную:

$$C(\frac{1}{3} \text{ Fe}^{3+}) = \frac{C(\text{Fe}^{3+})}{\frac{1}{3}} = 3 \cdot C(\text{Fe}^{3+});$$

$$C(\frac{1}{3} \text{ Fe}^{3+}) = 3 \cdot 0.05000 = 0.1500 \text{ моль экв/л.}$$

Рассчитаем количество моль эквивалентов ${\rm Fe}^{3+}$, поступившего в колонку:

$$n^0(\frac{1}{3} \text{ Fe}^{3+}) = C(\frac{1}{3} \text{ Fe}^{3+}) \cdot V_{\text{p-pa}};$$

 $n^0(\frac{1}{3} \text{ Fe}^{3+}) = 0,1500 \cdot 0,150 = 22,5 \cdot 10^{-3} \text{ моль экв} = 22,5 \text{ ммоль экв}.$

Чтобы найти суммарное количество моль эквивалентов Fe^{3+} на выходе из колонки, рассчитаем количество моль эквивалентов Fe^{3+} в каждой порции элюата.

В порциях № 1 и № 2 Fe³⁺ отсутствует.

В порции № 3:

$$n(1/3 \text{ Fe}^{3+}) = 3 \cdot 0,004 \cdot 25,0 \cdot 10^{-3} = 3,0 \cdot 10^{-4} \text{ моль экв.}$$

В порции № 4:

$$n(1/3 \text{ Fe}^{3+}) = 3 \cdot 0.03 \cdot 25.0 \cdot 10^{-3} = 2.25 \cdot 10^{-3} \text{ моль экв.}$$

В порциях N_0 5 и N_0 6 содержится одинаковое количество Fe^{3+} :

$$n(1/3 \text{ Fe}^{3+}) = 3 \cdot 0.05 \cdot 25.0 \cdot 10^{-3} = 3.75 \cdot 10^{-3} \text{ моль экв.}$$

Суммируем:

$$\sum_{i=1}^{6} n_i (\frac{1}{3} \text{Fe}^{3+}) = 3.0 \cdot 10^{-4} + 2.25 \cdot 10^{-3} + 2 \cdot 3.75 \cdot 10^{-3} =$$

=
$$10,05 \cdot 10^{-3}$$
 моль экв = $10,05$ ммоль экв.

Рассчитаем количество ммоль эквивалентов Fe^{3+} , поглощенного катионитом, по разности поступившего и вышедшего количества:

$$n_{\text{погл}}(1/3 \text{ Fe}^{3+}) = n^{0}(1/3 \text{ Fe}^{3+}) - \sum_{i=1}^{6} n_{i}(\frac{1}{3} \text{Fe}^{3+});$$
 $n_{\text{погл}}(1/3 \text{ Fe}^{3+}) = 22,5 - 10,05 = 12,45 \text{ (ммоль экв)}.$
Тогда:
$$\Pi ДОЕ = \frac{n_{\text{погл}}(\frac{1}{3} \text{Fe}^{3+})}{m_{\text{катионита}}};$$

$$\Pi ДОЕ = \frac{12,45}{4,0} = 3,11 \text{ ммоль экв/г}.$$

8.2. Хроматография

Пример 29 поможет Вам при решении задач № 204–206.

Рассчитать массовую долю (%) компонентов смеси по данным, полученным методом газо-жидкостной хроматографии (табл. 22).

Таблица 22

Вещество	S, mm ²	k
бензол	35,6	0,78
гексан	24,8	0,86
этанол	50,2	1,40
о-ксилол	10,3	0,84

Решение. Для расчетов будем использовать метод внутренней нормализации. Поэтому определение результатов будем проводить по формуле

$$\omega_i = \frac{k_i \cdot S_i \cdot 100}{\Sigma(k_i S_i)},$$

где k_i — относительный поправочный коэффициент i-го компонента, рассчитанный по формуле; S_i и $S_{\rm cr}$ — площади пиков i-го компонента.

Рассчитаем величину $\Sigma(k_i \cdot S_i)$

$$\Sigma(k_i \cdot S_i) = 0.78 \cdot 35.6 + 0.86 \cdot 24.5 + 1.40 \cdot 50.2 + 0.84 \cdot 10.3 = 128.028.$$

Рассчитаем содержание компонентов в смеси:

$$\omega_{\text{бензола}} = 0.78 \cdot 35.6 \cdot 100/128.028 = 21.7\%;$$
 $\omega_{\text{гексана}} = 0.86 \cdot 24.8 \cdot 100/128.028 = 16.7\%;$

$$\omega_{\mbox{\tiny ЭТАНОЛА}} = 1,40 \cdot 50,2 \cdot 100/128,028 = 54,9\%;$$
 $\omega_{\mbox{\tiny O-КСИЛОЛА}} = 0,84 \cdot 10,3 \cdot 100/128,028 = 6,7\%.$

Пример 30 поможет Вам при решении задач № 207–209.

Фракцию, полученную после выделения о-ксилола из продуктов каталитического риформинга, проанализировали методом газо-жидкостной хроматографии на содержание этилбензола с применением толуола в качестве внутреннего стандарта (табл. 23):

Таблица 23

Взято		$S_{ m этилбензола},$		$S_{ m толуола},$	
<i>т</i> (фракции), г	<i>т</i> (толуола), г	MM^2	k	MM^2	k
18,54	1,98	108	0,82	95	0,79

Рассчитать массовую долю (%) этилбензола во фракции.

Решение. При анализе использовался метод внутреннего стандарта. Поэтому расчеты проводим с использованием формулы данного метода:

$$\omega_i = \frac{k_i \cdot S_i \cdot r \cdot 100}{k_{\rm CT} S_{\rm CT}},$$

где k_i — относительный поправочный коэффициент i-го компонента; S_i и $S_{\rm cr}$ — площади пиков i-го компонента и внутреннего стандарта; r — отношение массы внутреннего стандарта к массе анализируемой смеси (без стандарта).

Рассчитаем величину r:

$$r = m_{\text{ct}}/m_{\text{смеси}} = 1,98 / 18,54 = 0,1068.$$

Вычислим массовую долю этилбензола во фракции:

$$\omega_i = \frac{k_i \cdot S_i \cdot r \cdot 100}{k_{CT} S_{CT}} = \frac{0.82 \cdot 108 \cdot 0.1068 \cdot 100}{0.79 \cdot 95} = 12.6\%.$$

Пример 31 поможет Вам при решении задач № 210–212.

α-Метилстирол в фенольной фракции производства ацетона и фенола кумольным методом определяли методом газовой хроматографии, используя стирол в качестве внутреннего стандарта, и получили следующие данные для градуировочного графика (табл. 24).

Таблица 24

ω α-метилстирола	1,0	2,0	3,0	4,0
$\frac{S_{\alpha-\text{метилстирола}}}{S_{\text{стирола}}}$	0,88	1,10	1,32	1,56

Рассчитать массовую долю (%) α -метилстирола в исследуемом образце, если основание пика α -метилстирола равно 24 мм, а высота — 80 мм, основание пика стирола — 20 мм, а высота — 68 мм. При решении принять k обоих веществ равным 1.

Решение. Рассчитаем площади пиков α-метилстирола и стирола как площадь треугольника:

$$S_{\alpha\text{-метилстирола}} = \frac{1}{2} \cdot 24 \cdot 80 = 960 \text{ mm}^2;$$

 $S_{\text{стирола}} = \frac{1}{2} \cdot 20 \cdot 68 = 680 \text{ mm}^2.$

Рассчитаем отношение $S_{\alpha\text{-метилстирола}}/S_{\text{стирола}}$ $S_{\alpha\text{-метилстирола}}/S_{\text{стирола}}=960/680=1,41.$

Построим градуировочный график (рис. 17).

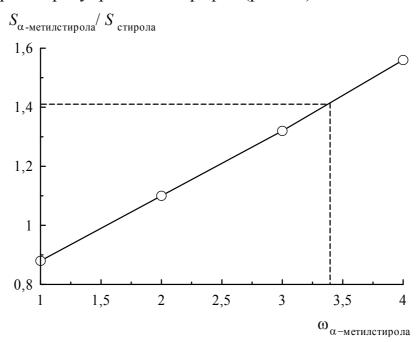


Рис. 17. Зависимость $S_{\alpha\text{-метилстирола}}/S_{\text{стирола}}$ от массовой доли $\alpha\text{-метилстирола}$

По градуировочному графику определяем массовую долю α -метилстирола ω α -метилстирола = 3,4%.

Пример 32 поможет Вам при решении задач № 213–217.

Для хроматографического определения меди на бумаге, импрегнированной диэтилдитиокарбаминатом свинца, методом осадочной хроматографии приготовили три стандартных раствора. Для этого навеску ${\rm CuSO_4\cdot 5H_2O}$ массой 0,6254 г растворили в колбе объемом 100 мл. Затем из этой колбы взяли 10,0; 15,0 и 20,0 мл раствора и разбавили в колбах на 50 мл. Исследуемый раствор также разбавили в колбе на 50,0 мл. Определить содержание меди в исследуемом растворе (г), если высота пиков окрашенных зон для стандартных растворов равны 27,8,40,2 и 65,1 мм, а для исследуемого раствора 52,1 мм.

Решение. Рассчитаем концентрацию меди в исходном стандартном растворе

$$C_{\text{исх}} = \frac{m_{\text{HaB}} \cdot M_{\text{Cu}}}{M_{\text{CuSO}_4} \cdot V} = \frac{0,6254 \cdot 63,56}{251,284 \cdot 100} = 0,001581 \text{ г/мл.}$$

Рассчитаем концентрацию меди в стандартных растворах:

 $C_1 = 0.001581 \cdot 10.0 / 50.0 = 0.0003162 \,\text{г/мл};$

 $C_2 = 0.001581 \cdot 15.0 / 50.0 = 0.0004743$ г/мл;

 $C_3 = 0.001581 \cdot 20.0 / 50.0 = 0.0006324$ г/мл;

Построим градуировочный график в координатах высота пиков h, мм, – концентрация меди, г/мл (рис. 18).

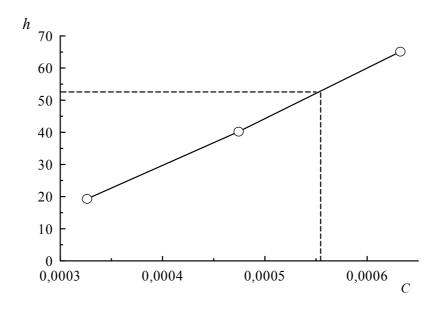


Рис. 18. Зависимость высоты пиков от концентрации

По графику определяем концентрацию исследуемого раствора $C_x = 0{,}00056$ г/мл и рассчитываем массу меди:

$$m = C_x \cdot Vx = 0.00056 \cdot 50 = 0.0280 \text{ r.}$$

Пример 33 поможет Вам при решении задач № 218–220.

Для определения дибутилфталата (ДБФ) в пищевых продуктах использовали метод тонкослойной хроматографии. При исследовании стандартных образцов получены следующие результаты (табл. 25).

Таблица 25

Концентрация ДБФ, мкг/0,03 мл	2,5	5	7,5	17,5
Площадь пятна, ${\rm mm}^2$	6,87	10,89	13,71	23,44

Навеску капусты массой 100 г обработали этиловым спиртом, затем полученный экстракт упарили до 10,0 мл. Для проведения анализа методом тонкослойной хроматографии использовали 0,03 мл полученного раствора и получили пятно площадью 12,58 мм². Определить концентрацию ДБФ в капусте (мг/кг).

Решение: Строим градуировочный график в координатах $\lg S - \lg C$ (рис. 19).

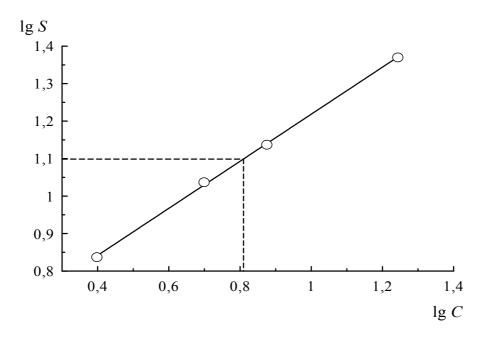


Рис. 19 . Зависимость $\lg S - \lg C$

По графику находим lg C=0.805. Отсюда $C=10^{0.805}$ = =6.4 мкг/0.03 мл.

Концентрация дибутилфталата в объеме 10 мл и 0,03 мл одинаковая. Поэтому рассчитаем массу ДБФ в 10 мл спиртового экстракта капусты из пропорции:

$$0,03 \text{ мл} - 6,4 \text{ мкг};$$
 $10 \text{ мл} - x,$

x = 2130 мкг, или 2,13 мг.

Следовательно, в 100 г капусты содержится 2,13 мг дибутилфталата. Найдем концентрацию ДБФ в капусте

$$C = 2,13/0,1 = 21,3 \text{ M}\Gamma/\text{K}\Gamma.$$

ПРИЛОЖЕНИЕ

Таблица 1 **Точность измеряемых величин**

Измеряемая величина	Средство измерения	Пример записи	Точность измерения
V, мл (при использо-	Пипетка, бюретка	25,00 мл 12,45 мл	± 0,05 мл
вании точной мерной посу- ды)	Мерная колба	100,0 мл	± 0,1 мл
V, мл (при использо- вании неточ- ной мерной по- суды)	Мерный стакан, мерный ци- линдр, мензурка	15 мл 3 мл	± 1 мл
т, г	Аналитические весы	0,1200 г	± 0,0001 г
	Технические ве- сы	0,10 г	± 0,01 г
Другие аналитические сигналы:	Приборы стрелочного ти- па	1⁄2 цены делени	е превышающей я на конкретном е шкалы
R, Om; κ, Cm/m; E, мB; pH; τ, c; I, мA, мкA; A; A _{каж} ; n _D ²⁰	Приборы с цифровым таб- ло	С точностью, соответствующей минимально возможной дис- кретности показаний табло	

Таблица 2 Точность расчета величин

Рассчитываемые	Точность расчета	Пример
величины	точность расчета	записи
1	2	3
т, г	± 0,0001 г	0,1200 г
ω, %	± 0,01%	8,65%
ω, [доли ед.]	± 0,0001	8,65% 0,0865

Окончание табл. 2

1	2	3
Атомная масса,	С точностью, указанной в	
молярная масса,	табл. Д. И. Менделеева,	
г/моль	или по справочнику [3]	
C, моль/л		0,1025 M
ρ*, г/л	4 averenus virtas	0,09168 г/л
<i>T</i> , <i>T</i> (A/B), г/мл	4 значащие цифры	0,005286 г/мл
ν, моль, ммоль		6,728 ммоль
Пругио	Должна соответствовать точ-	
Другие	ности наименее точной величи-	
величины	ны, взятой для расчета	

ЛИТЕРАТУРА

- 1. Физико-химические методы анализа: программа, методические указания и контрольные задания / сост. Н. А. Коваленко [и др.]. Минск: БГТУ, 2003. 37 с.
- 2. Аналитическая химия. Справочные материалы: учеб.-метод. пособие / сост. А. Е. Соколовский, Е. В. Радион. Минск: БГТУ, 2005.-80 с.
- 3. Лурье, Ю. Ю. Справочник по аналитической химии / Ю. Ю. Лурье М.: Химия, 1989.
- 4. Соколовский, А. Е. Физико-химические методы анализа: тексты лекций / А. Е. Соколовский, Е. В. Радион. Минск: БГТУ, 2008. 120 с.

ОГЛАВЛЕНИЕ

Предисловие	3
1. Потенциометрический метод анализа	4
1.1. Прямая потенциометрия	4
1.2. Потенциометрическое титрование	5
2. Кондуктометрический метод анализа	12
3. Электрохимические методы анализа, основанные на применении	
электролиза	16
3.1. Вольтамперометрия	16
3.2. Амперометрическое титрование	17
3.3. Электрогравиметрия	18
3.4. Кулонометрия	19
4. Фотометрические методы анализа	21
5. Эмиссионная фотометрия пламени	27
6. Турбидиметрия и нефелометрия	32
7. Рефрактометрия	36
8. Методы разделения и концентрирования	40
8.1. Ионный обмен	40
8.2. Хроматография	43
Приложение	49
Литература	51

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Составители: Соколовский Александр Евгеньевич Шакуро Наталия Федоровна Кийко Татьяна Николаевна

Редактор Р. М. Рябая Подписано в печать 10.06.2008. Формат $60^{x}84\ 1/16$. Печать офсетная. Усл. печ. л. 3,0. Уч.-изд. л. 3,1. Тираж 150 экз. Заказ .

Учреждение образования «Белорусский государственный технологический университет». 220006. Минск, Свердлова, 13а. ЛИ № 02330/0133255 от 30.04.2004.

Отпечатано в лаборатории полиграфии учреждения образования «Белорусский государственный технологический университет». 220006. Минск, Свердлова, 13. ЛП № 02330/056739 от 22.01.2004.