
130 

УДК 681.3 (075) 

Stud. Weronika Kuszneruk 

Supervisor prof. P. Urbanovich 
(the John Paul II Catholic University of Lublin, Poland)  

SOME FEATURES OF THE PRACTICAL USE OF THE AGILE 

TESTING TECHNOLOGIES 

Until recently software testing was perceived by many as destructive 

activity. Information about defects were swept under the rug, and a need to 

hire a tester was considered an unnecessary expense. This approach, of 

course, brought with it many failures, which were often costly in conse-

quence.  

The evolution of software development has forced a change in ap-

proach to the way the software is tested. This led to the development of an 

Agile Testing methodology [1, 2]. One of the most important assumptions 

of this approach is that the tester is no longer the only person responsible 

for the quality of the software produced. Responsibility is shared by the 

whole project team. Therefore, the team must learn to communicate in or-

der to be able to react better to events happening in the project. Better 

communication allows to avoid the problem of misunderstanding the re-

quirements, and also enables better verification of customer needs, which 

can undergo frequent changes. Agile testing and agile software develop-

ment methodologies are able to respond to such changes because in this 

approach software development is split into relatively short cycles, in 

which the client is constantly informed about the progress of work. The re-

sult of that is a project that meets the requirements of the end user. As team 

members' responsibility increases, so does their performance. This is be-

cause everyone working with a given software has a real impact on the suc-

cess of this project, which is clearly visible in the agile approach as op-

posed to the cascade methodology. 

The Agile approach uses the seven principles of testing. These prin-

ciples are:  

1) Testing Shows the Presence of Defects, 

2) Early Testing, 

3) Exhaustive Testing is Not Possible, 

4) Testing is Context-Dependent, 

5) Defect Clustering, 

6) Pesticide Paradox, 

7) Absence of Error. 

They are at the core of good software testing practices. According to 

one of those principles, testing should start as early as possible. From this 



131 

principle derives a concept of a test pyramid, which is used in agile testing. 

Such a pyramid is shown in Fig. 1 below. The pyramid shows the hierarchy 

of test levels. The amount of tests corresponds to a level in a pyramid - 

tests found on a base of it should be the most numerous. Typically, unit and 

integration tests are automated, which makes them relatively cheap and ra-

ther fast, and therefore at the bottom of the pyramid. The number of re-

maining tests should be successively smaller, with each level. 

 
Figure 1 – Test pyramid 

Agile testing uses several techniques that complement each other. 

This is, in turn, TDD, i.e. test driven development, ATDD, i.e. acceptance 

test driven development, and BDD, i.e. behavior driven development. The 

above techniques implement the testing principles mentioned above. What 

these techniques have in common is that they are all designed before actual 

software code is written. The first of the techniques, the TDD, is presented 

in Fig. 2. The assumption is that the person writing such a test creates it on 

the basis of an idea of a given functionality, before the development even 

starts.  

 

Figure 2 – Scheme Test-Driven Development 



132 

Then the tests and the newly created code of a given functionality 

should be run alternately until the test is successful. In the final stage, the 

code should be refactored. 

TDD is responsible for defining the entry criteria and tests when cre-

ating user stories. The use of this technique allows for quick fixing of de-

fects and software validation. BDD, in turn, allows to focus on the behavior 

of the software itself. The format of such a test is understandable to all 

team members and stakeholders.  

Of course, agile testing is not an ideal solution, it is associated with 

some problems that directly affect the tester. A good example here is the 

aforementioned risk of changing customer requirements. This may lead to 

the need to redo some parts of the previously performed work several 

times. In the event of a change in requirements, the tester must rebuild the 

test cases he has created earlier, or perform the tests themselves again. This 

in turn requires additional time, which generates additional costs. 

There are also concerns that a tester working in close contact with 

the development team, which is currently taking place when working with 

the use of agile methodologies, would lose objectivity. In my opinion, it is 

not the testing itself that is to blame, but rather the tester himself. There-

fore, I would not consider it in the context of potential disadvantages. Each 

tester may have a different approach to testing, he tests in a different way 

using different methods. However, there is nothing wrong with that, be-

cause it is this diversity among testers that increases the chances that the 

software has been tested on various levels. 

It should always be remembered that the reliability of the software 

determines the security of the information system [3, 4]. 

REFERENCES 

1. Roman A., Testowanie i jakość oprogramowania, Warszawa: 

PWN, 2018. 

2. Beck K., Sztuka tworzenia dobrego kodu, Gliwice: Helion, 2014. 

3. Ochrona informacji w sieciach komputerowych / pod red. prof. P. 

Urbanowicza. – Lublin: Wydawnictwo KUL, 2004. – 150 p. 

4. Urbanovich, P. P. Zashchitainformatsii: konspekt-lektsiya, ch. 2 = 

Information Protection, Part 2: BASIC METHODS / P. P. Urbanovich. – 

Minsk: BGTU, 2019. – 34 p. 

  


