
125

УДК [004.56+003.26] (075.8)

Stud. A.P. Górecki

Supervisor prof. P. Urbanovich
(the John Paul II Catholic University of Lublin, Poland)

WEB-APPLICATION OF AN ONLINE SHOP WITH A DATABASE

ON THE POSTGRESQL PLATFORM WITH AN INCREASED

LEVEL OF SECURITY

Nowadays, more and more web applications are created that may be

exposed to attacks by crackers who want to earn money on sensitive data [1,

2]. The e-commerce industry is developing just as well – people are more and

more willing to shop without leaving home. This translates into the fact that

stores collect more and more sensitive customer data. They are therefore more

vulnerable to attacks. The consequence of the attack on the store is large loss-

es, both financial and image. Customer data should be safely stored in the sys-

tem, and the application itself should be well secured.

The purpose of this bachelor's thesis is to create a proprietary online

store application with increased security. The application will be based on

JAVA language, Spring Framework technology, the PostgreSQL database,

TypeScript, JavaScript and Angular framework, HTML markup language and

CSS style sheet using the SCSS preprocessor. Because of the division of the

application into the frontend and backend, the frontend part must authenticate

each request sent to the server with a token. This is a safer solution than if the

browser were to have the user's password saved. The token is managed by the

OAuth 2.0 library, and its creation process is based on the JWT standard, i.e.

JSON Web Tokens.

The security problem of web-applications and stores is little noticed.

Only after a successful attack on our client's application solutions are sought.

That is why it is recommended to perform penetration tests that will show the

weaknesses of the system. It is worth noting that it is impossible to secure the

system fully, but you can minimize the risk of attacking it. In bachelor's thesis

was decided to analyse the XSS attack, SQL-Injection, data security in the da-

tabase and present in the proprietary application of the online store how to

protect it from these attacks.

This knowledge about these attacks and protection can be used to build

both online stores and other web-applications. Attacks and security tests

should not be carried out without the consent of the owner of the IT system.

The most harmful attack is SQL-Injection, which involves injecting

SQL code into the application, which enables:

· reading, modifying, deleting data even without authentication,

126

· access to the file system and saving files in the system on which the da-

tabase is set up,

· running the code in the file system.

An example SQL query for the SQL-Injection attack is shown in Figure

1 – SQL code in the URL bar. Next, in Figure 2 – Example without SQL-

Injection (top) and after the attack (bottom) in the first window, you can

see that in the normal name search, one record appears, and in the second

window, after the SQL injection, all records appear. A way to protect your

application from SQL-Injection is to use parameterized queries in your sys-

tems [3].

Figure 1 – SQL code in the URL bar

Figure 2 – Example without SQL-Injection (top) and after the attack (bottom)

Emphasis was also placed on protection against XSS attacks. The

Angular framework and the verification of the libraries attached to the pro-

ject will be used for this. The XSS attack may lead to:

· intercepting the user's token or capturing passwords,

· dynamic code modification or action execution as logged-in user,

Typesof XSS attacks:

· reflected XSS – it consists of injecting JavaScript code into a param-

eter, e.g. GET, while passing the parameter value to the HTML view,

· stored XSS – stored malicious code in the database,

· DOM-based XSS – code injection in the address bar, which is passed

to the eval or location function in the application.

An example of the JavaScript code for an XSS attack is shown in

Figure 3 – JavaScript code in the URL bar. Figure 4 – Successful re-

flected XSS attack shows only a harmless alert, but it could become, for

127

example, an attempt to steal a user's session. A way to protect against this

attack is to use libraries to clean up untrusted HTML code [3].

Figure 3 – JavaScript code in the URL bar

Figure 4 – Successful reflected XSS attack

The last thing is the problem of storing data securely in the database.

If the data is not encrypted, anyone who has access to the database can

view confidential data. To make such action difficult, the PostgreSQL da-

tabase will be used and its pgp_sym_decrypt() and pgp_sym_encrypt()

functions to encrypt sensitive customer data [4]. It is worth noting that the

database and the store's application must be run on two different servers.

An example of encryption of the last name attribute can be seen in Figure 5

– The encrypted last_name attribute in PostgreSQL.

Figure 5 – The encrypted last_name attribute in PostgreSQL

REFERENCES

1. Ochrona informacji w sieciach komputerowych / pod red. prof. P.

Urbanowicza. – Lublin: Wydawnictwo KUL, 2004. – 150 s.

2. Urbanowicz, P. Bezpieczenstwo w cyberprzestrzeni a prawo karne / Р.

Urbanowicz, M. Smarzewski // Ksiega pomiatkowa pomiatkowa ku czci

Księdza Profesora Andrzeja Szostka MIC, Lublin: KUL. – 2016. – Р. 479-488.

3. Bezpieczeństwo aplikacji webowych/ M. Bentkowski [at al.]. –

Kraków: Securitum Szkolenia, 2019.

4. How to encrypt and decrypt data with Hibernate. [Electronic re-

source]. – Access mode: https://vladmihalcea.com/how-to-encrypt-and-

decrypt-data-with-hibernate. – Access date: 23.01.2021.

УДК [004.56+003.26] (075.8)

Stud. Justyna Winiarczyk

Supervisor prof. P. Urbanovich
(the John Paul II Catholic University of Lublin, Poland)

