ИЗМЕНЕНИЕ МИКРОФЛОРЫ И АКТИВНОСТИ ФЕРМЕНТОВ ПОСЛЕ ПОЖАРА В ПОЧВЕ СОСНОВЫХ НАСАЖДЕНИЙ РАЗНЫХ ТИПОВ ЛЕСА

и. в. гуняженко

(Белорусский технологический институт им. С. М. Кирова)

Изменяя химические свойства, а иногда и механический состав почвы, огонь, применяемый в лесу в качестве лесохозяйственного мероприятия, либо стихийно распространяемый в виде лесного пожара, влияет и на другие показатели, в частности на ее биологическую активность. Важнейшими показателями биологической активности почвы, по мнению ряда отечественных и зарубежных ученых, служат количественный и качественный составы микрофлоры, а также ферментативная активность почвы, которая может рассматриваться как результат деятельности биогенного компонента почвы.

Для изучения влияния лесных пожаров на почвенную микрофлору и ферментативную активность почвы было заложено 6 пробных площадей на территории Цельского лесничества Осиповичского лесхоза в условиях шести наиболее распространенных и хорошо выделяемых типах леса (сосняках лишайниковом, вересковом, брусничном, черничном, долгомошном и сфагновом). При закладке пробных площадей обращалось внимание на то, чтобы возраст исследуемых насаждений и пос-

лепожарный период были примерно одинаковы.

Каждая пробная площадь состоит из двух секций, которые находятся в непосредственной близости друг от друга. На одной из них древостой поврежден пожаром, на другой не испытал его воздействия и использовался в качестве контроля. По исходным допожарным лесоводственно-таксационным показателям насаждения на секциях, поврежденных пожаром и соответствующих контролях, аналогичны. Таксационная характеристика пробных площадей приведена в табл. 1.

Как видно, древостои пробных площадей, заложенных в разных типах леса, примерно одного возраста. Величина послепожарного периода в этих насаждениях составляет 9 лет—все они повреждены по-

жаром 1960 г.

В октябре на всех секциях исследуемых пробных площадей на глубине 10 см стерильно были взяты смешанные почвенные образцы. Принятая глубина обусловлена наибольшей корнеобитаемостью этого горизонта почвы. Непосредственно после доставки образцов в лабораторию был произведен посев почвы с целью определения в ней бактерий, грибов и актиномицетов. Микроорганизмы определены методом разведений по общепринятой методике путем посева на плотные искусственные питательные среды. Содержание бактерий определено на мясопептонном агаре, грибов—на среде Чапека, актиномицетов — на крахмало-аммиачной среде.

Одновременно были поставлены опыты по определению фермента-

тивной активности исследуемых почв.

Таблица 1
Таксационная характеристика исследуемых пробных площадей

Проб- ная пло- щадь	Сосняк	Воз- раст, лет	Сос-	Средний диаметр, см	Средняя высота, м	Бо- ни- тег	Пол-	За- пас, м³/га
1	Лишайниковый	28	10C	6,4	6,2	lV	0.70	49
				7,3	6,2	IV	0,45	32
2	Вересковый	24	10C	7,2	7,5	III	0,74	67
				8,2	7,1	III	0,59	49
3	Брусничниковый	24	10C	8,2	9,1	II	0,76	90
				9,0	8,7	II	0,52	59
4	Черничниковый	28	8С2Б	8,9	10,0	II	0,92	109
				9,6	9,5	II	0,71	85
5	Долгомошниковый	28	10C	8,1	8,6	III	0,79	83
				10,9	9,6	III	0,60	69
6	Сфагновый	30	10C	7,9	6,4	IV	0,67	_46
				9,0	6,9	IV	0,33	25
į							[

Примечание. В числителе приводятся сведения для контрольных насаждений, в знаменателе—для поврежденных.

Инвертаза определялась путем инкубации почвы с раствором сахарозы и последующим определением восстанавливающих сахаров, образующихся при расщеплении сахарозы ферментам. Контролем в опытах служила стерилизованная почва.

Активность каталазы определялась газометрически по количеству образованного кислорода при добавлении к почве 3%-ного раствора перекиси водорода, активность пероксидазы и полифенолоксидазы -- посредством инкубации почвенной вытяжки с 1%-ным раствором пирогаллола с последующим определением образовавшегося пурпургалина.

Результаты приведены в табл. 2.

Количество микроорганизмов, находящееся в наиболее корнеобитаемом горизонте (10 см), значительно колеблется в зависимости от исследуемых типов леса. Следует отметить, что полученные нами данные согласуются с данными, приведенными Е. Н. Мишустиным (1966) при характеристике дерново-подзолистых почв сосновых насаждений Сереброборского лесничества. Количество микроорганизмов, полученное в наших опытах, для сосняков брусничникового и сфагнового достаточно близки к данным, полученным в сходных условиях соответственно А. Я. Мироненко (1963) и Ф. П. Вавуло (1966). Минимальное количество микроорганизмов отмечено в сосняках лишайниковом и сдагновом, а максимальное--- в сосняке черничном. В целом между продуктивностью насаждений и содержанием в их почве микроорганизмов наблюдается определенная связь. Указанная закономерность в основном справедлива и для бактерий. Обращает на себя внимание повышенное содержание грибов в сосняках лишайниковом и сфагновом. Как видно из таблицы, между содержанием грибов в насаждении и продуктивностью последнего наблюдается обратная связь.

Таблица 2
Влияние низовых пожаров на почвенную микрофлору в различных типах сосновых лесов

Проб- ная пло- щадь	Сосняк	честв	Общее количество микроорганизмов		Бактерии		Актиноми- цеты		Грибы	
		тыс.	%	тыс. шт.	%	тыс.	%	тыс.	%	
1	Лишайниковый	565	100	372 216	100	139	100	54 25	100	
2	Вересковый	578 454	100	409	100 74,6	125	100	44 48	100	
3	Брусничниковый	620 451	100 72,7	463	100 76,2	120 72	100	37 26	100 70,3	
4	Черничниковый	726 606	100	523 445	100	168	100 78,6	36 29	100	
5	Долгомошниковый	534 401	100 75,1	427 316	100 74,0	72 63	100 87,5	37 25	100 67,6	
6	Сфагновый	529 462	100 88,5	342 293	100 85,7	126 115	100	61 54	100	

Примечание. В числителе приводятся сведения для контрольных насаждений, в знаменателе—для поврежденных. Количество микроорганизмов приводится в тысячах штук на 1 г абсолютно сухой почвы.

Как и следовало ожидать влияние пожара в различных типах леса проявилось по-разному. Большой ущерб микрофлоре нанесли низовые пожары, возникшие в суходольных лесах (сосняки лишайниковый, вересковый, брусничниковый) и меньший — в увлажненных, исключение составляет сосняк долгомошный. Максимальный ущерб почвенной микрофлоре наносит лесной пожар в сосняке лишайниковом, где снижение количества микрофлоры даже по истечении 9 лет после пожара составляет примерно 40%. Минимальный ущерб отмечен в сосняке сфагновом, где количество микроорганизмов в почве поврежденной секции снизилось лишь на 12%.

Ферментативная активность почвы по общепринятым представлениям является в основном результатом деятельности корней растительности и почвенной микрофлоры. При этом различные авторы придают решающее значение в образовании почвенных ферментов либо деятель-

ности микроорганизмов, либо корневым системам растений.

Результаты проведенных исследований приведены в табл. 3. Данные показывают, что найти какую-либо четкую закономерность активности почвенных ферментов в условиях различных типов леса не представляется возможным. Что же касается влияния пожара на активность ферметов, то следует признать, что оно имеет место. Данные табл. 3 дают основание утверждать, что даже через 9 лет после пожара наблюдается несколько сниженная активность каталазы, пероксидазы и полифенолоксидазы. Вместе с тем в этих же насаждениях отмечена повышенная активность инвертазы. Интересно, что отмеченные закономерности не относятся к сосняку сфагновому. Причины повышенной активности инвертазы на гарях требуют дальнейших исследований. Следует отметить, что определение ферментативной активности почв, про-

Таблица 3

Влияние низовых пожаров на ферментативную активность почв в различных типах сосновых лесов

Проб- ная пло- щадь	Сосняк	Ката	Каталаза		Инвертаза		Пероксидаза		Полифенол- оксидаза	
		см ³ О ₂ 3а 3 мин/2 г почвы	% от конт- роля	мг глюко- зы /1 г за 24 часа	% от конт- роля	мг пур- пурга- лина/ 1 г почвы за 24 часа	% от конт- роля	мг пур пурга- лина/ 1 га за 24 часа	% ст конт- роля	
1	Лишайниковый	2,1	100	0,41	100	10,7	100	3,3	100	
2	Вересковый	1,8 2,5	85,7 100	0,43	104,9 100	9,6	89.7 100	3,1	93,9	
3	Брусничниковый	1.7 2,5	68,0 100	0,45	107,0 100	10,1	84,2 100	3,5 6,0	72,9 100	
		2,2	88,0	0,47	104,4	13,6	97,8	5,0	83,3	
4	Черничниковый	2,6	100 88,5	0,50	$\frac{100}{120.0}$	9,6	100 87,5	5,8 3,8	100 65.5	
5	Долгомошниковый	2,1	100	0,43	100	6,2	100	2,9	100	
		1,9	90,5	0,52	120,9	5,9	95,2	2,3	79,3	
6	Сфагновый	3,6	100 66,7	0,52	98,1	$\frac{4,8}{4,8}$	100	4,2	100	

Примечание. В числителе приводятся сведения для контрольных насаждений, в знаменателе—для поврежденных.

веденное автором через год после действия огня, показало снижение активности всех исследуемых ферментов, в том числе и инвертазы.

Наши исследования позволили сделать следующие выводы.

1. Низовые пожары отрицательно влияют на почвенную микрофлору поврежденных насаждений. Это наиболее резко сказывается в насаждениях, произрастающих на сухих почвах, и несколько меньше, в насаждениях на увлажненных почвах.

2. Низовые пожары влияют на активность почвенных ферментов, снижая активность каталазы, пероксидазы и полифенолоксидазы после пожара и повышая активность инвертазы. Исключением является на-

саждение типа сосняк сфагновый.

ЛИТЕРАТУРА

Вавула Ф. П. 1966. Микрофлора почв Белорусской ССР. В сб.: Микрофлора почв северной и средней части СССР. М. Мироненко А. Я., Туринович Е. С. 1963. Влияние промежуточной культуры люпинов и сплошной вспашки на микрофлору почвы сосняка-брусничника. В сб.: Ботаника, вып. 5. Минск. Мишустин Е. Н. и др. 1966. Микрофлора подзолистых и дерново-подзолистых почв. В сб.: Микрофлора почв северной и средней части СССР. М.