УДК 536.42+541.118+543.21+546.73

С. В. Шевченко, ассистент; Л. А. Башкиров, профессор; Г. С. Петров, доцент; Н. Н. Лубинский, аспирант

ТЕРМОГРАВИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ ФАЗОВЫХ ПЕРЕХОДОВ В LaCo_{1+x}O₃, NdCo_{1+x}O₃

In a paper for the first time analysis of the DTA, TG-curves (obtaining in air) for LaCoO₃, La-CoO₃ + 1 mass. % of La₂O₃, LaCo_{1+x}O₃, NdCo_{1+x}O₃ (x = 0,05; 0,10; 0,15) is conducted. It is stated that availability of endothermal effect at 1208 K in LaCoO₃ is due to the presence of micro-quantities of Co₃O₄ as a result of deviation of initial mixture of La₂O₃, Co₃O₄ powders from stoichiometric composition which may be due to the high hygroscopic properties of La₂O₃. In LaCo_{1+x}O₃, NdCo_{1+x}O₃ cobaltites abundance of cobalt relatively to lanthanum or neodymium leads to the increase of intensivity of this endothermal effect at ≈ 1200 K.

Введение. Кобальтиты АСоО3 (А – лантан и другие редкоземельные элементы) и твердые растворы на их основе со структурой типа искаженного перовскита обладают особыми магнитными, электрическими, электрохимическими, каталитическими, сенсорными свойствами и являются перспективными материалами электронной техники. Такой широкий спектр особых физико-химических свойств, используемых на практике, обусловлен тем, что в них 3dэлектроны ионов трехвалентного кобальта при температурах ниже 100-500 К находятся в низкоспиновом состоянии $(t_{2g}^6 e_g^0)$, а при более высоких температурах они переходят последовательно в промежуточно- $(t_{2g}^5 e_g)$ и высокоспиновое $(t_{2g}^{*}e_{g}^{*})$ состояния [1-3]. Ионы трехвалентного кобальта (Со^Ш) в низкоспиновом состоянии имеют ионный радиус меньше, чем в промежуточно- и высокоспиновом (Со³⁺) состояниях. По этой причине кристаллическая структура кобальтитов и ряд физических свойств (магнитная восприимчивость, электропроводность, тепловое расширение и др.) проявляют аномальное поведение при изменении температуры.

Согласно основополагающей работе [1], кобальтит лантана до температуры не выше 648 К имеет структуру ромбоэдрически искаженного перовскита типа R3c, а в интервале температур 648–1210 К – структуру типа R3. В этой работе при помощи ДТА обнаружен эндотермический эффект: при температуре 1210 К, как показали рентгеноструктурные исследования, наблюдалось уменьшение ромбоэдрического угла α_R до 60,0°, что соответствует кубической структуре. К тому же при температурах 503 и 923 К были обнаружены фазовые переходы не первого порядка.

Исследования, проведенные в работах [2, 3], не подтвердили наличия в LaCoO₃ фазового перехода первого рода при 1210 К.

В работе [4] методами высокотемпературной рентгенографии, ДТА, ТГ, ДТГ исследованы монокристаллы LaCoO₃ и порошки, полученные путем измельчения этих монокристаллов. Показано, что ромбоэдрический угол α_R при повышении температуры постепенно уменьшается и становится равным 60,0° при температуре около 1610 К, при которой, вероятно, протекает структурный фазовый переход от ромбоэдрической к кубической структуре. На кривых ТГ, ДТГ поликристаллического образца LaCoO₃ при температурах 570, 920 и 1210 К четко наблюдалось уменьшение (на 0,6 %) массы образца, вызванное, как утверждают авторы работы [4], десорбцией H₂O и CO₂. На кривой ДТА присутствовал лишь один эндотермический эффект при 570 К. Однако на кривых ТГ и ДТА монокристаллического образца LaCoO₃ постепенное уменьшение массы за счет потери кислорода наблюдалось только при температурах выше 1400 К, и в интервале температур 1400–1700 К оно составляло 0,7 %.

Согласно [5], у кобальтитов NdCoO₃, GdCoO₃ фазовый переход первого рода наблюдается при температурах 980 и 1030 К соответственно. Однако ΔH этих переходов существенно меньше, чем у LaCoO₃.

Нами в работе [6] проведен анализ кривых ДТА, ТГ, полученных при нагревании на воздухе в интервале температур 293-1273 К порошков кобальтитов LaCoO₃, NdCoO₃, GdCoO₃ и твердых растворов La_{1-x}Nd_xCoO₃, La_{1-x}Gd_xCoO₃, а также оксида Со₃О₄. Установлено, что у всех исследованных кобальтитов наблюдаются эндотермические эффекты при 1013 и 1208 К, сопровождающиеся потерей массы (не более 0,2 %), которые соответствуют температуре окончания выделения сверхстехиометрического кислорода у Со₃О₄ и его термического разложения на CoO и O2. Сделано предположение, что эндотермический эффект при 1208 К обусловлен термическим разложением кластеров, по составу близких к СозО4, образовавшихся в интервале температур 648-1210 К в результате протекания реакции электронного обмена между трехвалентными ионами кобальта $Co^{III} + Co^{3+} = Co^{IV} + Co^{2+}$, которая, согласно Гуденафу, в значительной степени определяет электропроводность LaCoO₃ [1]. Сделано также предположение, что совпадение температур (1013, 1208 К) эндотермических эффектов у исследованных в работе [7] кобальтитов и Со₃О₄ обусловлено наличием в

образцах кобальтитов фазы Co_3O_4 в количестве, не превышающем 0,5 мас. %, присутствие которой рентгенографическим методом не обнаруживается.

Целью настоящей работы является исследование методами ДТА, ТГ фазовых переходов, протекающих в интервале температур 293–1273 К в кобальтитах LaCo_{1+x}O₃, NdCo_{1+x}O₃, содержащих избыток кобальта по отношению к редкоземельному элементу, и проверка предположения, что фазовый переход при 1208 К в LaCoO₃ обусловлен присутствием в образцах микроколичеств фазы Co₃O₄.

1. Методика эксперимента. Образцы $LaCo_{1+x}O_3$, $NdCo_{1+x}O_3$ (x = 0; 0,05; 0,10; 0,15) получены керамическим методом из оксидов лантана, неодима, кобальта (Со₃О₄). Все реактивы имели квалификацию «х.ч.». Порошки La₂O₃, Nd₂O₃ предварительно прокаливали при температуре 1273 К в течение двух часов. Порошки исходных соединений, взятых в заданных молярных соотношениях, смешивали и мололи в планетарной мельнице Puluerizette 6 фирмы Fritsch с добавлением этанола для улучшения прессуемости. Полученную шихту прессовали под давлением 50-75 МПа в таблетки диаметром 10 и высотой 5-7 мм, которые затем сушили на воздухе при 373 К и отжигали при температуре 1473 К на воздухе в течение пяти часов. После предварительного отжига таблетки дробили, вновь измельчали в планетарной мельнице, перепрессовывали в таблетки и обжигали при 1473 К на воздухе в течение 20 часов.

Для проверки предположения [7], что небольшой эндотермический эффект при 1208 К в кобальтите LaCoO₃ обусловлен присутствием фазы оксида Со₃О₄, не обнаруживаемого рентгенофазовым анализом, к порошку LaCoO₃, на кривой ДТА которого этот эндотермический эффект присутствовал, добавили 1 мас. % La2O3, и спрессованную таблетку из такого порошка обжигали при 1473 К в течение пяти часов. Анализ рентгеновских дифрактограмм, полученных с использованием Сика-излучения на дифрактометре ДРОН-3, показал, что все образцы были однофазными. Дифференциальный термический (ДТА) и термогравиметрический (ТГ) анализы проводили на дериватографе Q1500 фирмы МОМ (Венгрия) системы Паулик – Паулик – Эрдей на воздухе в интервале температур 293-1273 К со скоростью нагревания 10 К/мин (материал тигля – Al₂O₃, эталон – Al_2O_3 , масса порошкообразной навески – 1,0 г).

2. Результаты и их обсуждение. На рис. 1 приведены кривые ДТА, ТГ, полученные при нагревании в интервале температур 293–1273 К порошков кобальтитов LaCoO₃ (кривые 1, 1') и LaCoO₃ + 1 мас. % La₂O₃ (кривые 2, 2'). Видно, что на кривых ДТА, ТГ образца LaCoO₃ + 1 мас. % La₂O₃ отсутствует эндотер-

мический эффект при 1208 К, а второй эндотермический эффект LaCoO3 при 1003 К значительно уменьшился и сместился до температуры 993 К. Добавление 1 мас. % La₂O₃ к LaCoO₃ практически не повлияло на величину эндотермического эффекта при 653 К у LaCoO₃, но его температура сместилась до 623 К. Полученные кривые ДТА, ТГ подтверждают сделанное предположение о том, что эндотермический эффект при 1208 К вызван присутствием в образце LaCoO₃ незначительного количества фазы СозО4, появившегося, вероятно, в результате поглощения порошком прокаленного оксида La2O3 некоторого количества паров H₂O и CO₂ из воздуха при взятии навески La2O3 для синтеза LaCoO3 и, как следствие, некоторого избытка кобальта по отношению к лантану в кобальтите.

На рис. 2 приведены кривые ДТА, ТГ для кобальтитов LaCo1+xO3, содержащих избыток кобальта относительно лантана. Видно, что высокотемпературный (≈1200 К) эндотермический эффект присутствует у всех исследованных кобальтитов LaCo_{1+x}O₃, и интенсивность этого пика постепенно увеличивается при увеличении избытка кобальта. При этом несколько увеличивается и потеря массы при температурах этого эффекта: от 0,2 % для LaCo_{1.05}O₃ до 0,3 % для LaCo_{1,15}O₃. Для кобальтитов LaCo_{1+x}O₃ со значением x = 0,05; 0,10; 0,15 температура этого эндотермического эффекта, обусловленного, вероятно, термическим разложением Со₃О₄ на СоО и О2, равна 1178, 1193, 1193 К соответственно, а для LaCoO₃ она равна 1208 К (рис. 1). Общая потеря массы кобальтитов LaCo_{1+x}O₃ при нагревании на воздухе от 293 до 1200 К практически одинакова и равна 0,5 % (5 мг для навески 1 г). При этом в интервале температур 600-880 К для кобальтитов LaCo11O3, LaCo115O3 наблюдалось небольшое увеличение массы (не более 0,1 %). Температура второго эндотермического эффекта кобальтитов LaCo_{1+x}O₃ при значениях x = 0; 0,05; 0,10; 0,15 равна 1003, 983, 1003, 983 К соответственно, и его интенсивность при увеличении x практически не изменяется.

На рис. 3 приведены кривые ДТА, ТГ для кобальтитов NdCo_{1+x}O₃ (x = 0; 0, 10; 0, 15). Из них видно, что, как и в кобальтитах LaCo1+xO3, избыток кобальта относительно неодима приводит к увеличению интенсивности высокотемпературного эндотермического эффекта, температура которого для кобальтитов NdCo1+xO3 при значениях x = 0; 0,10; 0,15 равна 1198, 1193, 1203 К. Потеря массы образцов NdCo1+xO3 при температурах этого эндотермического эффекта при увеличении избытка кобальта постепенно увеличивается от 0,1 мас. % для NdCoO3 до 0,3 мас. % для NdCo1,15O3. На рис. 3 также видно, что избыток кобальта в NdCo1+xO3 приводит к уменьшению интенсивности второго эндотермического эффекта при 1003 К и исчезновению третьего и четвертого эндотермических эффектов у NdCoO₃ при температурах 793 и 638 К.

400 500 600 700 800 900 1000 1100 1200 *T*, К
Рис. 3. Кривые ДТА (1, 2, 3) и ТГ (1', 2', 3') образцов кобальтитов NdCo_{1+x}O₃: x = 0 (1, 1');
0,10 (2, 2'); 0,15 (3, 3'). Потеря массы между двумя пунктирными линиями на шкале ТГ равна 5 мг

Следует отметить, что подобно оксиду лантана оксид неодима также может легко поглощать пары H_2O и CO_2 из воздуха при охлаждении после прокаливания при 1273 К. По этой причине в NdCoO₃ присутствует микроколичество фазы Co₃O₄, наличие которой и ответственно за эндотермический эффект при 1198 К.

Таким образом, полученные результаты еще раз свидетельствуют о том, что при работе с оксидами лантана и неодима следует предпринимать особые меры предосторожности (например, проводить закалку образцов после прокаливания в эксикаторе и взвешивать образцы только в бюксах).

Заключение. В работе впервые проведен анализ кривых ДТА, ТГ (полученных на LaCoO₃, LaCoO₃ + 1 Mac. % La₂O₃, воздухе) $LaCo_{1+x}O_3$, $NdCo_{1+x}O_3$ (x = 0,05; 0,10; 0,15). Ycтановлено, что наличие эндотермического эффекта у LaCoO₃ при 1208 К обусловлено присутствием микроколичеств фазы Со₃О₄, что вызвано отклонением от стехиометрического состава исходной смеси порошков La2O3, Co3O4 из-за гигроскопичности прокаленного La₂O₃. В кобальтитах LaCo1+rO3, NdCo1+rO3 избыток кобальта относительно лантана или неодима приводит к увеличению интенсивности этого эндотермического эффекта при температуре ≈1200 К, что подтверждает сделанный вывод о природе этого эффекта в LaCoO₃.

Литература

1. Raccah, P. M. First-order localized-electron collective electron transition in LaCoO₃ / P. M. Raccah, J. B. Goodenough // Phys. Rev. – 1967. – Vol. 155, № 3. – P. 932–940.

2. Thornton, G. A neutron diffraction study of LaCoO₃ in the temperature range 4,2 < T < 1248 K / G. Thornton, B. C. Tofield, A. W. Hewat // J. Solid State Chem. - 1986. - Vol. 61, No 3. - P. 301-307.

3. Thornton, G. Spin state equilibrium and the semiconductor to metal transition of $LaCoO_3$ / G. Thornton, B. C. Tofield, D. E. Williams // Solid State Commun. - 1982. - Vol. 44, No 8. - P. 1213-1216.

4. Structural phase transition from rhombohedral to cubic in LaCoO₃ / Y. Kobayashi [et al.] // J. Phys. Soc. Jap. – 2000. – Vol. 69, № 10. – P. 3468–3469.

5. Mössbauer studies of the high-spin-low-spin equilibria and the localized-collective electron transition in LaCoO₃ / V. G. Bhide [et al.] // Phys. Rev. – 1972. – Vol. 6, № 3. – P. 1021–1032.

6. Шевченко, С. В. Термогравиметрические исследования высокотемпературных фазовых переходов в LaCoO₃ и твердых растворах La_{1-x}Gd_xCoO₃, La_{1-x}Nd_xCoO₃ / С. В. Шевченко, Л. А. Башкиров, Г. С. Петров // Весці НАНБ. Сер.'хім. навук. – 2007. – № 1. – С. 5–9.