Е. А. Чижова, ассистент; А. И. Клындюк, доцент

ВЛИЯНИЕ ДЕФИЦИТА КАТИОНОВ НА СТРУКТУРУ И СВОЙСТВА СЛОИСТОГО ФЕРРОКУПРАТА ИТТРИЯ-БАРИЯ

The $Y_{0.95}BaCuFeO_{5+\delta}$, $YBa_{0.95}CuFeO_{5+\delta}$, $YBaCu_{1-x}FeO_{5+\delta}$, $YBaCuFe_{1-x}O_{5+\delta}$ ($0.01 \le x \le 0.10$) ferrocuprates using ceramic method had been prepared. It was found that lattice constants of the cationsdeficient yttrium-barium ferrocuprates did not change practically but electrical conductivity values decreased with vacancies formation in different cationic sublattices of the YBaCuFeO_{5-\delta} structure. It was observed that YBaCuFe_{0.9}O_{5+\delta} ceramic had an anomalous high electrical conductivity value.

Многие функциональные материалы обладают структурой перовскита (ABO₃) или подобной ей. Среди таких материалов позисторная керамика на основе BaTiO₃, высокотемпературные твердые электролиты на базе BaCe(Zr)O₃₋₆ (протонные проводники) или LaGaO₃ (кислородионные проводники), обладающие эффектом колоссального магнитосопротивления (KMC) манганиты и кобальтиты редкоземельных элементов (P3Э) RMn(Co)O₃₋₆ (R = P3Э), высокотемпературные сверхпроводящие купраты типа YBa₂Cu₃O₇₋₆ и т. д.

Для улучшения свойств базовых фаз (ABO₃) используют, как правило, два основных метода: 1) гетеровалентное замещение катионов в А- или В-подрешетках перовскита (донорное или акцепторное легирование); 2) изменение содержания кислорода в образцах (синтез фаз, нестехиометричных (недостаточных) по кислороду). При этом 1-й и 2-й методы часто совмещаются: так, акцепторное легирование кобальтитов РЗЭ (проводники р-типа) сопровождается образованием в них кислородных вакансий -La_{1-x}Sr_xCoO_{3- δ} ($\delta \le x/2$). В последнее время для варьирования свойств перовскитов часто используют 3-й метод - самолегирование (направленное создание в них катионной нестехиометрии). Метод основан на способности перовскитов (АВО3) сохранять свою кристаллическую структуру при образовании до 5-10% вакансий в катионных А- или В-подрешетках.

Соединения типа YBaCuFeO₅₊₈ являются типичными представителями интенсивно исследуемых в последнее время кислороддефицитных слоистых двойных перовскитов [1]. В работах [2–5] была показана возможность использования слоистых феррокупратов типа YBaCuFeO₅₊₈ в качестве катализаторов или химических сенсоров газов, причем, согласно [2, 3, 5], наилучшими каталитическими или сенсорными характеристиками обладают легированные феррокупраты, такие, как YBa(Cu,Co)FeO₅₊₈ [2] или YBaCu(Fe,Ni)O₅₊₈ [5].

Известно, что каталитические, сенсорные и электротранспортные свойства оксидных материалов взаимосвязаны. Согласно [6, 7], варьи-

рование катионного состава феррокупрата иттрия-бария и гетеровалентное замещение входящих в состав YBaCuFeO_{5+δ} катионов оказывают сходное влияние на электропроводность производных этой фазы. Учитывая изложенное, систематическое исследование влияния катионной нестехиометрии на структуру и свойства YBaCuFeO_{5+δ} представляет значительный научный и практический интерес.

В данной работе представлены результаты исследования влияния дефицита катионов в А- (Y^{3+}, Ba^{2+}) и В-подрешетках (Cu²⁺, Fe³⁺) на параметры кристаллической структуры, термическое расширение и электропроводность производных феррокупрата иттрия-бария.

Образцы Y_{0.95}BaCuFeO₅₊₆, YBa_{0.95}CuFeO₅₊₆, YBaCu_{1-x}FeO_{5+ δ}, YBaCuFe_{1-x}O_{5+ δ} (0.01 $\leq x \leq$ 0.10) получали керамическим методом [6, 7] из Y₂O₃ (ИтО-ЛЮМ7), Fe₂O₃ (ос. ч. 2–4), CuO (ос. ч. 9–2) и ВаСО₃ (ч.) на воздухе при температуре 1173 К в течение 40 ч. Рентгенофазовый анализ (РФА) полученных образцов проводили на дифрактометре ДРОН-3 (излучение Cu_{Ка}, Ni-фильтр) при комнатной температуре. Содержание кислорода в образцах (5 + δ) определяли иодометрически [8]. Для изучения термического расширения и электропроводности из полученных порошков прессовали таблетки диаметром 10 мм и толщиной 3-5 мм и бруски размером 5×5×30 мм, которые затем спекали на воздухе в течение 2-8 ч при температуре 1273 К. Общую пористость (П) спеченных образцов находим по формуле

$$\Pi = \left(1 - \frac{\rho_{\mathsf{эксп}}}{\rho_{\mathsf{рент}}}\right) \cdot 100\%,$$

где $\rho_{\text{рент}}$ – рентгенографическая, а $\rho_{\text{эксп}}$ – кажущаяся плотность, определенная по массе и геометрическим размерам образцов.

Для разделения пористости на закрытую и открытую спеченные таблетки кипятили в дистиллированной воде в течение 30–90 мин (до тех пор, пока масса образцов после кипячения не переставала изменяться). Открытую пористость (Π_0) вычисляли по формуле

$$\Pi_{\rm O} = \frac{(m_2 - m_1)}{\rho_{\rm H_2O} \cdot V_{\rm T}} \cdot 100\%,$$

где m_1 и m_2 – масса таблетки до и после кипячения соответственно; $\rho_{\rm H,O}$ – плотность воды при температуре опыта; $V_{\rm T}$ – объем таблетки, определенный по ее геометрическим размерам.

Рис. 1. F ентгеновские дифрактограммы катиондефицитных феррокупратов: YBaCu_{0.90}FeO_{5+δ} (*1*), YBa₀₉₅CuFeO_{5+δ} (*2*), YBaCuFeO_{5+δ} (*3*), Y_{0.95}BaCuFeO_{5+δ} (*4*), YBaCuFe_{0.90}O_{5+δ} (*5*) (Cu_{Kα}-излучение)

Закрытую пористость (П₃) рассчитывали как разность между общей (П) и открытой пористостью (П₀) керамики:

$$\Pi_3 = \Pi - \Pi_0.$$

Термическое расширение образцов исследовали дилатометрическим [7], а электропроводность – четырехконтактным методом на постоянном токе на воздухе в температурном интервале 293–1023 К в динамическом режиме по методике [6, 7].

Как видно из рис. 1, все синтезированные образцы феррокупратов иттрия-бария были, в пределах погрешности РФА (≤3% [9]), однофазными. На основании результатов РФА можно заключить, что нами были, действительно, получены катиондефицитные образцы (а не композиты типа, например, «0.9YBaCuFeO₅₊₈ + + 0.05Y₂BaCuO₅ + 0.05BaCuO₂» в случае образца YBaCuFe09O5+8) и что структура YBaCuFeO5+8 сохраняется при образовании до 5% вакансий в каждой из катионных подрешеток (Y, Ba, Cu/Fe) этой фазы. Полученные нами результаты соответствуют данным [10], согласно которым на базе слоистого купрата иттрия-бария YBa2Cu3O7-8 (родственного слоистому феррокупрату YBaCuFeO₅₊₈) могут образовываться достаточно широкие ряды твердых растворов общего состава $Y_{1\pm x}Ba_{2\pm y}Cu_{3\pm z}O_{7-\delta}$, где $x \approx 0.15$, $y \approx 0.15$, *z* ≈ 0.28, т. е. при образовании до ≈15, ≈7.5 и ≈9% вакансий в подрешетках иттрия, бария и меди соответственно.

Как видно из табл. 1, параметры кристаллической структуры образцов практически не изменяются при образовании до 5% вакансий в подрешетках Y, Ba, Cu/Fe феррокупрата иттрия-бария. Учитывая, что содержание кислорода в образцах было примерно одинаковым, полученные результаты можно объяснить тем, что образование катионных вакансий компенсируется образованием «дырок» на других катионах, например, по схеме

$$Y_Y^{\times} + 3Fe_{Fe}^{*} \rightarrow V_Y^{*} + 3Fe_{Fe}^{\bullet}$$

Таблица 1

пористости (п.	, γ_0), электропроводности при SUU K (σ_{300} , CM · CM) и SUU K (σ_{900} , CM · CM ·	,
	катиондефицитных образцов феррокупрата иттрия-бария	

Образец	A	С	V	η	ρ _{рент}	Π	σ ₃₀₀	σ900
YBaCuFeO5 + 8	0,3875	0,7669	115,2	0,9896	6,13	3.	$3,72 \cdot 10^{-3}$	$4,02 \cdot 10^{-1}$
Y ₀₉₅ BaCuFeO _{5+δ}	0,3876	0,7674	115,3	0,9899	6,05	12	8,42.10-5	$1,02 \cdot 10^{-1}$
YBa _{0.95} CuFeO _{5 + 8}	0,3875	0,7666	115,1	0,9892	6,03	19	5,56.10 7	$6,86 \cdot 10^{-2}$
YBaCu _{0.99} FeO _{5 + 8}	0,3874	0,7662	115,0	0,9889	6,13	32	$4,24 \cdot 10^{-5}$	$2,21 \cdot 10^{-1}$
YBaCu _{0 95} FeO _{5 + 8}	0,3873	0,7661	114,9	0,9890	6,09	34	$1,18 \cdot 10^{-4}$	$2,66 \cdot 10^{-1}$
YBaCu _{0.90} FeO _{5 + δ}	0,3874	0,7669	115,1	0,9898	6,03	31	$4,85 \cdot 10^{-5}$	3,13.10-1
YBaCuFe _{0.99} O _{5 + 8}	0,3876	0,7665	115,2	0,9889	6,12	15	6,36·10 ⁻²	$2,95 \cdot 10^{-1}$
YBaCuFe _{0.95} O _{5 + 8}	0,3874	0,7666	115,1	0,9894	6,08	19	4,61.10 6	$6,78 \cdot 10^{-2}$
YBaCuFe _{0.90} O _{5 + δ}	0,3873	0,7671	115,1	0,9903	6,02	18	6,18.10-1	$3,09.10^{0}$

Величина закрытой пористости для всех катиондефицитных образцов имела близкое значение и составляла около 10%. Общая (и открытая) пористость катиондефицитных образцов значительно выше, чем у YBaCuFeO5+6, при этом наибольшей пористостью обладают образцы с дефицитом меди (табл. 1). Ухудшение спекаемости, по-видимому, обусловлено выделением катионных вакансий и электронных дефектов на межзеренных границах, а резкое (в 1.5-2 раза) различие в величинах пористости медь- и железодефицитных образцов может служить косвенным подтверждением того, что Cu²⁺ и Fe³⁺ занимают в YBaCuFeO₅₊₆ различные кристаллографические позиции и что структуру этой фазы следует описывать в рамках пространственной группы симметрии (пр. гр. сим.) Р4тт [1, 11], а не Р4/ттт [12].

Варьирование содержания меди и железа в YBaCuFeO₅ практически не сказывается на величине коэффициента линейного термического расширения (КЛТР, α) исследованных в данной работе феррокупратов иттрия-бария. Так, КЛТР фазы YBaCuFe_{0.95}O₅₋₈ в интервале температур 293–1023 К составил (14.5 ± 0.7) · 10⁻⁶ K⁻¹, что, в пределах погрешности, совпадает со значением КЛТР YBaCuFeO₅₊₈: (14.3 ± 0.7) · 10⁻⁶ K⁻¹.

Рис. 2. Температурные зависимости электропроводности катиондефицитных феррокупрагов: YBaCu_{0.90}FeO_{5+δ} (1), YBa_{0.95}CuFeO_{5+δ} (2), YBaCuFeO_{5+δ} (3), Y_{0.95}BaCuFeO_{5+δ} (4), YBaCuFe_{0.90}O_{5+δ} (5)

Как видно из рис. 2, электропроводность (о) катиондефицитных феррокупратов во всем исследованном интервале температур носила полупроводниковый характер $\left(\frac{\partial \sigma}{\partial T} > 0\right)$, при

этом величина проводимости в целом закономерно уменьшалась при образовании и росте концентрации вакансий в различных катионных подрешетках YBaCuFeO₅₊₈ (рис. 3, табл. 1). При этом, как видно из рис. 2 и табл. 1, наибольшее влияние на величину о феррокупрата иттрия-бария оказывает образование вакансий в подрешетке бария - минимальной проводимостью среди исследованных образцов обладает фаза YBa_{0.95}CuFeO₅₊₈. Из этого можно заключить, что электротранспортные свойства слоистых феррокупратов в значительной степени зависят от степени дефектности (в общем случае, от состояния) –[BaO]_∞- слопроводящих блоков -[(Fe/Cu)O2-BaOев $(Fe/Cu)O_2]_{\infty}$ кристаллической структуры YBaCuFeO_{5+δ} [1, 6].

Следует отметить особенности электропроводности образцов, дефицитных по В-подрешетке. Величины электропроводности медьдефицитных образцов при высоких температурах были близки (слабо зависели от концентрации катионных вакансий). Для фаз с дефицитом железа (YBaCuFe_{1-x}O₅₁₈) проводимость уменьшалась только до x = 0.05, а далее возрастала, причем величина о для состава YBaCuFe_{0.9}O_{5+δ} была аномально высокой и превышала (на 1–2 порядка) значение о для базовой фазы YBaCuFeO_{5+δ}.

Рис. 3. Концентрационные зависимости электропроводности керамических образцов феррокупрата иттрия-бария с дефицитом меди YBaCu_{1-x}FeO_{5+δ} (*1*-3) и железа YBaCuFe_{1-x}O_{5+δ} (*4*-6) при 300 (*1*, *4*), 600 (*2*, *5*) и 900 К (*3*, *6*)

Значения энергии активации электропроводности (E_A) катиондефицитных феррокупратов, рассчитанные из линейных участков зависимостей $\ln(\sigma \cdot T) = f(1/T)$, а также температуры изломов на этих зависимостях (T^*) приведены в табл. 2. Излом на зависимостях $\ln(\sigma \cdot T) = f(1/T)$ для исследованных фаз (исключая состав YBaCu_{0.95}FeO₅₊₈), обусловлен, вероятно, изменением механизма образования и переноса носителей заряда («дырок») в этих образцах вблизи T^* [6].

Таблица 2

Величины температур излома (T^* , K) на зависимости $\ln(\sigma \cdot T) = f(1/T)$ и энергии активации электропроводности (E_A , эB) керамики на основе YBaCuFeO_{5+δ}

Образец	<i>T</i> *	$E_{A} \left(T < T^* \right)$	$E_{A}\left(T > T^*\right)$	
YBaCuFeO _{5+δ}		0,24		
Y _{0.95} BaCuFeO ₅₊₈	440	0,19	0,44	
YBa _{0.95} CuFeO _{5+δ}	380	0,16	0,65	
YBaCu _{0.99} FeO _{5+δ}	385	0,16	0,47	
YBaCu _{0.95} FeO ₅₁₈		0,34		
YBaCu _{0.90} FeO _{5+δ}	665	0,39	0,26	
YBaCuFe _{0.99} O ₅₊₈	700	0,19	0,25	
YBaCuFe _{0.95} O _{5+δ}	525	0,25	0,43	
YBaCuFe _{0.90} O ₅₊₈	395	0,05	0,13	

Как видно из табл. 2, величины E_A в высокотемпературной области для изученных феррокупратов выше, чем в низкотемпературной (исключая YBaCu_{0.9}FeO_{5+δ}), при этом наибольшее значение $E_A = 0.65$ эВ найдено для фазы с недостатком бария YBa_{0.95}CuFeO_{5+δ}. Близость этого значения к E_A электропроводности твердых растворов YBa_{0.95}K_{0.05}CuFeO_{5+δ} (0.64 эВ) и Y_{0.95}Ce_{0.05}BaCuFeO_{5+δ} (0.65 эВ) [6] позволяет заключить, что механизм электропереноса в слоистых феррокупратах в значительной степени зависит от распределения заряда между -[Y]_∞- и -[BaO]_∞- слоями их кристаллической структуры.

Интересно отметить близость электрических свойств (σ и E_A) железодефицитного образца YBaCuFe_{0.9}FeO_{5+δ} и описанной в работе [7] фазы YBaCu_{1.05}Fe_{0.95}O_{5+δ}, хотя выяснение причин этого требует дополнительных исследований, проведение которых планируется.

Работа выполнена при поддержке БРФФИ.

Литература

1. Er-Rakho L., Michel C., LaCorre Ph., Raveau B. YBaCuFeO₅₊₈: a novel oxygen deficient pearovskite with a layer structure // J. Solid State Chem. - 1988. - V. 73, N_{2} 2. - P. 531-535.

2. Rentschler T. Substitution of Co into the system YBaCuFeO_{5+ δ} // J. Alloys and Comp. - 1996. - V. 232. - P. 43-52.

3. Чижова Е. А., Клындюк А. И., Петров Г. С. и др. Сенсорные и каталитические свойства твердых растворов на основе YBaCuFeO₅ // Новейшие достижения в области импортозамещения в химической промышленности и производстве строительных материалов: Материалы Междунар. науч.-техн. конф., Минск 26–28 нояб. 2003 г.– Мн.: БГТУ, 2003. – С. 317–319.

4. Klyndziuk A. I., Petrov G. S., Kurhan S. V. et al. Sensor Properties of Some Perovskite-Like Metal Oxides // Chem. Sens. - 2004. - Vol. 20, Suppl. B - P. 854-855.

5. Клындюк А. И., Чижова Е. А., Таратын И. А. Сенсорные свойства феррокупратов YBaCu(Fe, M_x)O₅ (M – Mn, Co, Ni) // Труды БГТУ. Сер. III. Химия и технология неорган. в-в. – Мн., 2005 – Вып. XIII. – С. 54–58.

6. Клындюк А. И., Чижова Е. А., Курган С. В., Алисиенок О. А. Гетеровалентное замещение и катионная нестехиометрия в YBaCuFeO₅ // Труды БГТУ. Сер. III. Химия и технология неорган. в-в. – Мн., 2004. – Вып. XII. – С. 89–95.

7. Клындюк А.И., Чижова Е.А. Влияние катионного состава феррокупрата YBaCuFeO₅ на его свойства // Весці НАН Беларусі. Сер. хім. навук. – 2006. – № 2. – В печати.

8. Захарчук Н. Ф., Федина Т. П., Борисова Н. С. Определение кислорода в ВТСПматериалах. Новые возможности и перспективы метода // Сверхпроводимость: физика, химия, техника. – 1991. – Т. 4, № 7. – С. 1391–1399.

9. Ковба Л. М., Трунов В. К. Рентгенофазовый анализ. – М.: МГУ, 1976. – 232 с.

10. Кольцова Т. Н., Нипан Г. Д. Влияние катионной нестехиометрии на свойства YBa₂Cu₃O₇₋₈ // Журн. неорган. химии – 1996. – T. 41, № 12. – С. 1944–1947.

11. Mombru A. W., Christides C., Lappas A. et al. Magnetic structure of the oxygen-deficient perovskite YBaCuFeO₅₊₈ // Inorg. Chem. – 1994. – V. 33. – P. 1255–1258.

12. Suematsu H., Linden J., Nagase M. et al. Space group determination of $BaY(Cu_{0.5}Fe_{0.5})_2O_{5+\delta}$ phase using a convergent-beam electron-diffraction technique // J. Solid State Chem. – 2004. – V. 177. – P. 1958–1964.