Ю.Д. Ильюхин, доцент; Л.В. Новаш, науч. сотрудник (ОИЭЯИ «Сосны» НАНБ);

В.Н. Фарафонтов, доцент

ИСПОЛЬЗОВАНИЕ ГЕЛИОНАГРЕВАТЕЛЬНЫХ УСТАНОВОК ДЛЯ ТЕПЛОСНАБЖЕНИЯ

The results of experimental investigation sun water heater with different collectors are presented.

Суммарное потребление топливно-энергетических ресурсов на нужды теплоснабжения и горячего водоснабжения составляет порядка 40% от общего потребления энергоресурсов. Ввиду ограниченности собственных запасов ТЭР в республике необходимо осуществить максимально возможное использование нетрадиционных источников энергии, в том числе энергии солнца.

Исследования показали, что по возможности использования солнечной энергии Беларусь близка к ряду стран Европы.

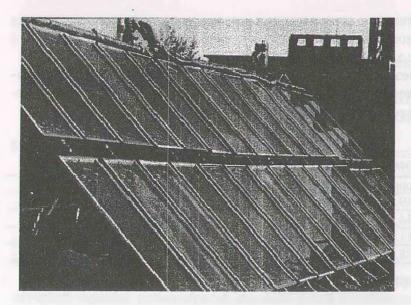
Среднегодовое поступление суммарной (прямой и рассеянной) солнечной энергии составляет, $\kappa B_{\text{T}} \cdot \text{ч/m}^2$:

Варшава – 980; Минск – 1030; Потсдам – 1040; Киев – 1160.

Продолжительность солнечного сияния в Беларуси изменяется от 1735 ч в год в Полоцке до 1951 ч в год в Пинске. Среднесуточное поступление солнечной энергии на широте Минска составляет 2.8 кВт·ч/м².

В средних широтах солнечная энергия поступает неравномерно в течение года. Так, в Северной Европе объем поступающей солнечной энергии в 10 раз больше в летние месяцы, чем в зимние (в Южной Европе в 5 раз).

Из-за неравномерности прихода солнечной радиации в Беларуси наиболее целесообразно использование солнечной энергии в течение весны – осени (предпочтительно апрель – сентябрь), когда с каждого квадратного метра поверхности коллектора может быть получено порядка 90 л/сут воды с температурой 55–60 °C.


Для широкого внедрения гелионагревательных установок следует разработать наиболее эффективные преобразователи солнечной энергии в тепловую, отработать технологии производства необходимых материалов гелиоколлекторов с высоким коэффициентом поглощения, новых теплоизоляционных материалов, экспериментально исследовать эффективность работы различных гелиосистем, выдать рекомендации для серийного производства и внедрения гелиоэнергетического оборудования в республике.

В Объединенном институте энергетических и ядерных исследований («Сосны») проводятся исследования эффективности использования солнечной энергии в системе подогрева котловой воды.

Гелиосистема (из 30 коллекторов общей площадью 24 м²) установлена на плоской крыше котельной на площадке 14 х 6.5 м. Угол наклона системы относительно горизонта примерно 45 °C. Ориентация коллекторного поля – юг – юго-восток (рисунок).

Циркуляция воды в системе принудительная, бак накопитель отсутствует. Отбор воды на гелиосистему производится до автоматического клапана, поддерживающего уровень воды в конденсатных баках. Давление воды в точке отбора — 2—4 атм.

Химически очищенная вода с температурой от 13 до 17 °C, пройдя через гелионагревательную систему снизу вверх, нагревается до 50–60 °C, поступает на деаэрационную установку (где происходит окончательный нагрев до 102–103 °C) и направляется на подпитку котлов (4 паровых ДКВР-10-13 и одного водогрейного ПТВМ-30М) и теплосети.

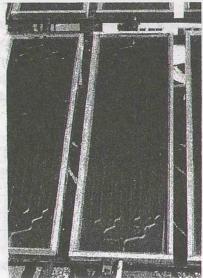


Рис. Общий вид гелиоводонагревательной установки и гелиоколлектора

При проведении исследований ежедневно в рабочие дни с часовым интервалом производился учет тепловой энергии с помощью микропроцессорного теплосчетчика ТЭМ-05, фиксировались следующие параметры:

- расход воды, $M^3/4$;
- тепловая мощность, кВт;
- температура в подающем трубопроводе, °C;
- температура в обратном трубопроводе, °C;
- разность температур в подающем и обратном трубопроводе, °С;
- суммарное количество теплоты, МВт-ч;
- суммарный расход теплоносителя, м³.

Испытания проведены на двух типах гелиоколлекторов.

В 1997 и 1998 годах были проведены испытания гелиосистемы из трубчатых поливинилхлоридных коллекторов, разработанных в Белорусском научно-исследовательском институте механизации сельского хозяйства (БелНИИМСХ). При ее работе в течение 1.5 сезонов получено количество тепловой энергии эквивалентное ~ 1.82 т у.т. [1].

Однако при эксплуатации данной системы обнаружилось низкое качество исходного материала ПВХ-трубок и ненадежность сварных швов в условиях принудительной циркуляции воды, поэтому в начале 1999 года от эксплуатации данных коллекторов пришлось отказаться.

В сентябре 1999 года в эксплуатацию была принята гелиосистема, состоящая из алюминиевых гелиоколлекторов (рисунок), разработанных в АНК «ИТМО им. А.В. Лыкова», испытания которой проводились с 2000 по 2003 год. Характеристики коллектора приведены в табл. 1.

Технические характеристики коллектора

Таблица 1

Параметры	Величины 0.8		
Площадь поверхности, поглощающей солнечные лучи, м2			
Материал поглощающей поверхности	Алюминиевый профиль		
Температура нагрева воды, °С	60 ± 10		
Масса без воды, кг	25		
Вместимость теплообменника, кг	0.5		
Габаритные размеры, мм	1800 x 600 x 80		
Рабочее давление, атм	6		
Срок службы, лет	10		

Преимущества гелиосистемы из алюминиевых коллекторов: высокая надежность работы в течение четырех сезонов, меньший полный вес заполненной гелиосистемы, что важно при установке на крышах зданий.

В табл. 2 представлены результаты работы гелиосистемы из алюминиевых коллекторов в течение 4 сезонов. Система работала примерно 5.5 мес. в сезоне. Суммарное количество тепла, полученное за 4 сезона работы эквивалентно ≈ 7.4 т у. т.

Таблица 2 Суммарное количество полученной тепловой энергии (кВт-ч)

Годы	апрель	май	июнь	июль	август	сентябрь	октябрь	сезон
2000	1183.3	2240.78	1749.5	921.63	1612.3	1221.6	525.0	9454.11
2001	638.8	2250.29	1334.1	2729.86	2115.75	889.5	149.5	10107.8
2002	620.3	2785.6	2611.6	2337.8	2648.6	1250.7	195.9	12450.5
2003	527	2730.4	1748.4	2034.8	1741.3	1105.8	0.5	9361.2

^{*} В апреле и октябре гелиосистема работает не полный месяц

В сезоне 2004 года предполагается провести испытания гелиоустановки с коллекторами, разработанными и изготовленными ООО «Электрет» и использованием баканакопителя (такие системы наиболее часто используются на предприятиях сельского хозяйства) и провести сравнительный анализ работы двух систем.

В заключение можно сказать, что результаты проведенных экспериментальных исследований могут быть использованы для:

- проектирования гелиоустановок подогрева воды на котельных;
- выдачи рекомендаций по использованию таких систем;
- оценки потенциала энергосбережения при использовании энергии солнца для получения тепловой энергии;
- обучения студентов по курсу «Энергоэффективные технологии» на базе нетрадиционных и возобновляемых источников энергии.

ЛИТЕРАТУРА

Михалевич А.А., Ильюхин Ю.Д., Новаш Л.В. Экспериментальное исследование характеристик гелиоустановки в системе водоподготовки на котельной АНТК «Сосны» // Энергоэффективность. -1998. № 3.- С. 4-5.