1 И.А. Караваев, 1 Е.В. Савинкина, 2 М.С. Григорьев, 3 Г.А. Бузанов (1 РТУ МИРЭА, г. Москва, 2 ИФХЭ РАН, г. Москва, 3 ИОНХ РАН, г. Москва)

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КОМПЛЕКСОВ НИТРАТОВ ПРАЗЕОДИМА, САМАРИЯ И ЛЮТЕЦИЯ С КАРБАМИДОМ – ПЕРСПЕКТИВНЫХ МАТЕРИАЛОВ ДЛЯ СИНТЕЗА НАНОРАЗМЕРНЫХ ОКСИДОВ РЗЭ

Координационные соединения нитратов переходных и редкоземельных элементов с мочевиной стали объектом повышенного интереса исследователей в связи с развитием высокотемпературного самораспространяющегося синтеза в растворах — solution combustion synthesis (SCS), который позволяет получать разнообразные наноразмерные материалы, такие как, оксиды, сульфиды, металлы, сплавы. При выборе оптимальных условий синтеза обычно исследуют влияние на состав и свойства продуктов таких параметров, как природа топлива, соотношение топливо: окислитель, температура прокаливания и т.п. Молекулы карбамида способны формировать достаточно устойчивые комплексы с солями переходных и редкоземельных элементов, следовательно, было высказано предположение о том, что в результате проведения синтезов методом SCS такие соединения также будут формироваться.

В данной работе были исследованы координационные соединения нитратов празеодима, самария и лютеция с карбамидом (Ur). Было показано применение комплекса нитрата празеодима с карбамидом для получения наноразмерного оксида празеодима [1].

Кристаллизацию комплексов осуществляли, исходя из данных изотерм растворимости: Ln(NO₃)₃-H₂O-Ur [2] при мольном соотношении компонентов 1:1, 1:2, 1:4 и 1:6 при температуре 5°С. Спустя 60−90 дней наблюдали формирование кристаллов, окрашенных в цвет редкоземельного иона. Состав и индивидуальность полученных комплексов были доказаны совокупностью методов: элементный анализ, комплексонометрическое титрование, ИК-спектроскопия, РФА, РСА, термический анализ (дифференциальная сканирующая калориметрия, термогравиметрический анализ). По результатам проведенных исследований было показано, что состав образующихся комплексов отвечает следующим формулам: [Pr(Ur)₄(NO₃)₃], [Sm(Ur)₄(H₂O)(NO₃)₂]NO₃,

 $[Lu(Ur)_4(NO_3)_2]NO_3$, т.е реализуется соотношение 1:4. Комплексы других составов в данных условиях выделить не удалось.

Таблица. 1 Результаты элементного анализа полученных комплексов.

No	Комплексное соединение	Найдено/Вычислено, %							
п/п		С	Н	N	Ln				
I	$[Pr(Ur)_4(NO_3)_3]$	8.46/7.44	2.82/2.91	20.29/20.22	25.40/24.51				
II	[Sm(H2O)(Ur)4(NO3)2]NO3	8.09/8.07	3.03/3.05	25.39/26.72	25.09/25.89				
III	$[Lu(Ur)_4(NO_3)_2]NO_3$	7.91/7.98	2.68/2.68	24.92/25.61	28.60/29.10				

Методом ИК-спектроскопии была доказана координация молекул карбамида через атом кислорода, о чем свидетельствует смещение полосы валентного колебания группы С=О в сторону больших длин волн.

Таблица 2. Результаты ИК-спектроскопии комплексов нитратов празеодима, самария и лютеция с мочевиной

Название	Ur			-NO ₃			
	ν(NH)	ν(C=O)	ν(CN)*	ν(NO ₃)*	$\nu(NO_3)$	$\nu(NO_3)**$	$\nu(NO_3)$
Ur	3481	1675	1460	-	-	-	-
$[Pr(Ur)_4(NO_3)_3]$	3471	1653	1476	1384	1155	1040	818;766;735
[Sm(H2O)(Ur)4(NO3)2]NO3	3471	1653	1477	1384	1156	1039	825;776;742
$[Lu(Ur)_4(NO_3)_2]NO_3$	3476	1649	1500	1451	1384	1034	819;773;750

Методом РФА было показано, что в полученные соединения являются однофазными, о чем свидетельствует отсутствие рефлексов прекурсоров – $Ln(NO_3)_3 \cdot xH_2O$ и Ur.

Данные РСА комплекса [Pr(Ur)₄(NO₃)₃] детально рассмотрены в работе [3]. Координационное число центрального иона равно 10. Данный комплекс имеет молекулярное строение. Комплекс нитрата самария имеет совсем иное строение. В нем внутренняя координационная сфера представлена четырьмя молекулами мочевины, координированными через атом кислорода, двумя нитрат-ионами, демонстрирующими хелатно-бидентатный характер, а также одной координированной молекулой воды. Координационное число центрального иона в данном комплексе равно 9. Комплекс имеет ионное строение, во внешней сфере располагается один нитрат-ион. В структуре комплекса лютеция наблюдается понижение координационного числа до 8. Молекулы воды не входят во внутреннюю координационную сферу. Данный комплекс также имеет ионное строение. Во внешней сфере располагается один нитрат-ион.

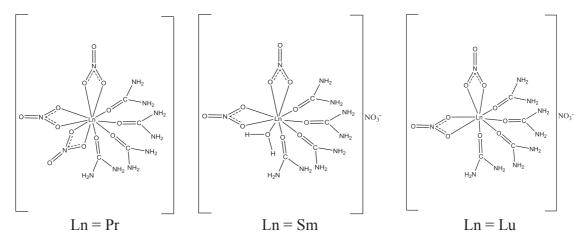


Рисунок 1. Состав комплексных соединений нитратов празеодима, самария и лютеция с мочевиной состава 1:4

Результаты термического анализа удалось детально изучить для комплексов [$Pr(Ur)_4(NO_3)_3$] [3] и [$Sm(H_2O)(Ur)_4(NO_3)_2$] NO_3 . Было показано, что термическое разложение полученных комплексов протекает в несколько стадий. Два эндоэффекта с максимумами при 77°C и 271°C для комплекса [$Pr(Ur)_4(NO_3)_3$], вероятно, связаны с превращением двух молекул мочевины в молекулу биурета с последующим выделением аммиака и дальнейшим разложением органических лигандов, приводящим к образованию соединения празеодима с одной молекулой мочевины и цианатными и нитратными анионами. Дальнейшее нагревание соединения празеодима приводит к двум экзоэффектам при 340°C и 382°C, приписываемым последовательным реакциям цианата и мочевины с нитратом. В результате при 402°C образуется $Pr_2O(CO_3)_2$, дальнейшее нагревание которого сопровождается образованием Pr_6O_{11} при 463°C, а в конечном итоге Pr_2O_3 .

Для комплекса $[Sm(H_2O)(Ur)_4(NO_3)_2]NO_3$ эндоэффекты с максимумами при 53°C и 246°C, вероятно, связаны с протеканием процесса, в результате которого происходит отщепление координированной молекулы воды и удалением внешнесферного нитрат-иона. Также здесь имеют место быть те же превращения, что и для комплекса празеодима. Дальнейшее нагревание соединения самария приводит к двум экзо-эффектам при 366°C и 480°C, приписываемым последовательным реакциям цианата и мочевины с нитратом. Конечным продуктом термолиза, исходя из расчетов, является Sm_2O_3 .

Таким образом, в работе были описаны и охарактеризованы комплексные соединения нитратов празеодима, самария и лютеция с карбамидом. Для комплексов $[Pr(Ur)_4(NO_3)_3]$ и $[Sm(H_2O)(Ur)_4(NO_3)_2]NO_3$ установлены интервалы температур самораспространяющегося высокотемпературного синтеза. Показано, что

для получения целевых оксидов РЗЭ необходимо дополнительное прокаливание основных карбонатов, формирующихся в процессе протекания SCS.

ЛИТЕРАТУРА

- [1] B.M. Abu-Zied, Appl. Surf. Sci. 471 (2019) 246–255, https://doi.org/10.1016/j. apsusc.2018.12.007
- [2] Solubilities Data Series—Volume 13: Scandium, Yttrium, Lanthanum and Lanthanide Nitrates: S. Siekierski, M. Salomon and T. Mioduski (Editors), Pergamon, London, 1983
- [3] Elena V. Savinkina, Igor A. Karavaev, Mikhail S. Grigoriev, Polyhedron. 92 (2020). 114875. https://doi.org/10.1016/j.poly.2020.114875