В основу данной классификации положены условия работы геотекстилей в дорожных конструкциях. Хотя следует отметить, что в данной классификации не учитывается несущая способность подстилающего слоя грунта и коэффициент фильтрации грунта.

Работа по совершенствованию классификации геотекстилей будет продолжаться.

ЛИТЕРАТУРА

- 1. Синтетические текстильные материалы в транспортном строительстве / В.Д. Казарновский, А.Г. Полуяновский, В.И. Рувинский и др. Под ред. В.Д. Казарновского. -М.: Транспорт, 1984.
- 2. Определение свойств геотекстилей для дорожного строительства // Труды БГТУ, вып. V, серия II, 1997.
- 3. Alfheim'S., Sorlie A. Testing and classification of fabris for application in road construction. C.R.Coll. Jnt. Sols Textiles, vol. II, 1977, s. 333-338.
- 4. Wilmers W. Untersuchung zur Verwendung von Geotextilien im Erdbau. Straβe und Autobahn. № 2, 1980, s. 69-87.

УДК625.8;551.5

С.Н. Спирида, аспирант; П.А. Лыщик, доцент; М.Т. Насковец, ст.преп.

ВЛИЯНИЕ ПОГОДНО-КЛИМАТИЧЕСКИХ ФАКТОРОВ НА ЭКСПЛУАТАЦИОННОЕ СОСТОЯНИЕ АВТОМОБИЛЬНЫХ ЛЕСОВОЗНЫХ ДОРОГ

In this article are given a weather - climatic factors, influencing work of a road. The influence forest plantings change of conditions of influence of the factors is shown.

Автомобильные лесовозные дороги пересекают различные природные ландшафты. Они проходят по открытой местности, заболоченным участкам и болотам, по лесу. Ситуационные условия, наряду с погодноклиматическими факторами и различного рода нагрузками, оказывают существенное влияние на факторы, обуславливающие работоспособность дорожных конструкций, их прочность и срок службы. Действующие нормы проектирования лесовозных дорог не учитывают влияния лесонасаждений, произрастающих в зоне прохождения трассы, на водно-тепловые процессы, протекающие в земляном полотне и дорожной одежде. Это обстоятельство зачастую приводит к ухудшению эксплуатационных качеств дорог и преждевременной потере их работоспособности.

Погодно-климатические факторы также оказывают влияние на эксплуатационное состояние проезжей части дороги. Среди этих факторов можно выделить несколько основных, таких, как количество осадков, выпадающих в зоне прохождения лесных дорог (рис.1), температура воздушной среды, зависящая от мощности солнечной энергии (рис.2), и другие [1].

Дождь и туман, снегопад и пурга ухудшают видимость и затрудняют движение по автомобильным дорогам. Отложения снега повышают сопротивления качению автомобиля, а иногда приводят к весьма существенным помехам в выполнении транспортных операций. Под влиянием низких температур происходит промерзание и перераспределение влаги в грунтах земляного полотна, а высокие температуры снижают сдвигоустойчивость покрытий, построенных с использованием органических вяжущих материалов.

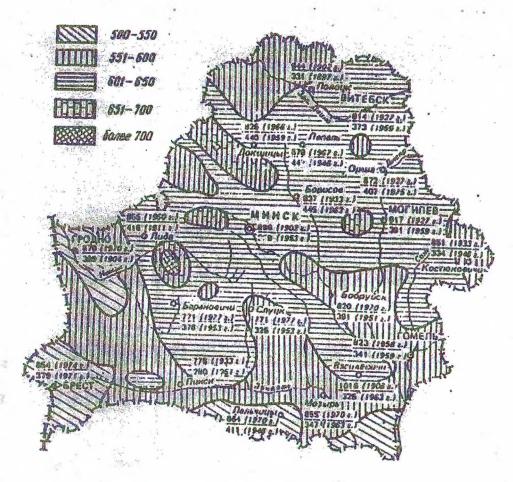


Рис.1. Годовое количество осадков (в мм)

Для предотвращения этих негативных явлений необходимо учитывать водно-тепловой режим земляного полотна и дорожных одежд, который зависит от количества осадков, испарения, колебания температуры воздуха и грунта, скорости и направления ветра, продолжительности морозного периода, мощности снегового покрова и глубины промерзания грунта.

Одним из факторов, который оказывает большое влияние на изменение водно-теплового режима является воздействие солнечной энергии на поверхность земляного полотна. Поверхность дороги получает большое количество солнечной радиации. Величину, которой характеризуют мощность потока лучистой энергии солнца, и называют интенсивностью радиации. Энергия солнца достигает земной атмосферы с интенсивностью 1,4 КДж/м²с (2 кал/см²мин); 48 % этой величины - видимая часть спектра, 7 % - ультрафиолетовая; 45 - инфракрасная и 1 % - рентгеновские лучи и радиоволны. Атмосфера поглощает приблизительно 20 % поступающей на ее верхнюю границу солнечной радиации. Еще 34 % радиации отражается от поверхности Земли, атмосферы, облаков и взвешенных в атмосфере примесей. Остальные 46 % поглощаются земной поверхностью.

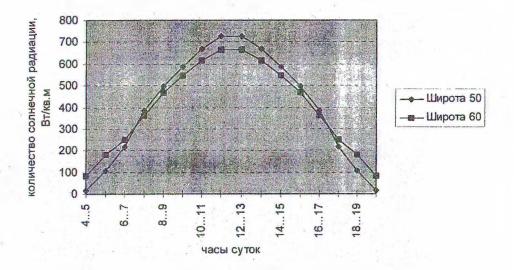


Рис. 2. Изменение прямой солнечной радиации по часам суток

Количество тепла, приходящегося на горизонтальную поверхность и зависящего от угла падения лучей, определяем по формуле [2].

$$I_1 = I \cdot \sin \alpha, \tag{1}$$

где I - количество тепла в 1 минуту на 1 см^2 перпендикулярной к лучам поверхности, Дж;

α - угол стояния солнца над горизонтом, град.

Исходя из данной формулы можно определить общее количество тепла, получаемого поверхностью земляного полотна на протяжении суток:

$$I_{\text{obsu}} = I \cdot \sum \sin \alpha_i \cdot t_i, \tag{2}$$

где t_i - промежуток времени падения солнечных лучей на освещаемую поверхность;

 α_i - угол падения солнечных лучей на дорожное полотно в течении і- го промежутка времени.

В условиях лесистой местности угол падения лучей солнца на поверхность земляного полотна будет обуславливаться высотой деревьев и расстоянием, на котором он будет находиться от дороги (рис.3).

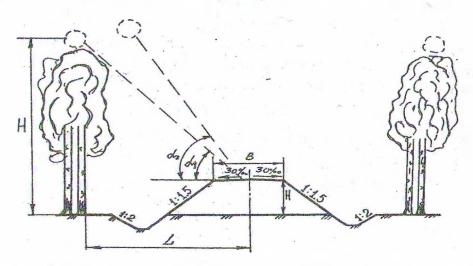


Рис.3. Влияние размещения лесонасаждений на угол падения солнечных лучей

Следовательно, зная высоту древостоя вдоль дороги и расстояние до него, можно определить угол, при котором дорожная конструкция начнет получать прямую солнечную энергию.

$$tg \alpha = H/L, \qquad (3)$$

где Н - высота древостоя, м;

L - расстояние от дороги до деревьев, м.

Таким образом видно, что количество тепла, попадающего на дорожное полотно, будет зависеть от высоты древостоя и ширины полосы отвода. Определив из формулы (3) sinα и подставив его в формулу (1), получим закономерность попадания количества тепла на поверхность конструкции:

$$I_1 = I \cdot H / L \cos \alpha. \tag{4}$$

Испарения с дорожной конструкции зависят не только от количества солнечной радиации, но и от скорости и направления ветра.

Затухание скорости ветра в насаждениях от поверхности почвы происходит неодинаково и зависит от типа леса, его состава, возраста, полноты насаждений. Особую роль в этом случае играет форма и густота крон деревьев, наличие подлеска, подроста или второго яруса. Если принять скорость ветра над пологом за 100%, то в пологе она уменьшается до 10-20%, далее под пологом весьма малозаметно усиливается, а с понижением к поверхности почвы постепенно затухает и не превышает 0.5-1.0 м/с. Изменение скорости ветра приводит также к изменению величины испарений с поверхности дороги. Так, при снижении скорости ветра на 30% испарения с поверхности земляного полотна уменьшаются на 15-20% [2].

Рассмотренные выше и другие погодно-климатические факторы необходимо учитывать при проектировании дорожных конструкций автомобильных дорог, проходящих через лесные массивы.

ЛИТЕРАТУРА

- 1. И.И. Леонович. Дорожная климатология. Мн.: БГПА, 1994.
- 2. Н.И. Костюкевич. Лесная метеорология. Изд. 2-е, переработанное и доп., Мн.: Вышэйшая школа, 1975.

УДК 674.093

А.А.Янушкевич, доцент; С.В.Шетько, аспирант

РАСКРОЙ БРЕВЕН НА РАДИАЛЬНЫЕ ПИЛОМАТЕРИАЛЫ

The composition and calculation of optimal sawing schems of logs on the radial lumbers.

Эффективность лесопиления во многом зависит от качества получаемой пилопродукции.

На физико-механические и эксплуатационные характеристики пиломатериалов оказывают влияние не только пороки древесины, но также расположение годичных слоев в поперечном сечении пиломатериалов.

Пиломатериалы, у которых угол между пластью доски и касательной к годичному слою более 60°, называются радиальными, более 45°- полурадиальными.