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Abstract: In this work, different cationic surfactants with various aliphatic and aromatic ammonium
cations were used to prepare inhibitor coatings and were characterized by different techniques
such as IR spectroscopy and NMR. The inhibitor coatings were prepared by electrografting on the
steel surface and their anticorrosion properties were evaluated in different media (HCl, H2SO4 and
NaCl solutions). The electrochemical potentiodynamic polarization technique was used to study
the inhibition efficiency of the prepared coatings. The dependence of the wetting properties of the
electrografted layer and its homogeneity on the molecular structure of the prepared surfactants was
studied. Particular attention was paid to the relationship between the properties of these surfactants in
terms of critical micellar concentration, packing and wetting, and the anti-corrosion efficiency of their
coatings. In this paper, we discuss the synergistic inhibition effect and the anticorrosion efficiency.

Keywords: aromatic ammonium cations; inhibitor coatings; corrosion; wettability

1. Introduction

Materials in their working conditions are usually subjected to different degradations,
which induce loss of mass, alters their properties, and limits their sustainability and
usefulness. For metallic materials such as steel in aggressive media, additional degradation
due to its electrochemical corrosion takes place, cations appear in the water and the
corresponding negative charge is formed in the metal [1,2]. In the case of carbon steels,
the first stage of the corrosion reaction takes place in the anodic region, where the iron is
oxidized to ferrous ions, which pass into solution according to Reaction (1).

Fe(s)− > Fe2+(aq) + 2e− (1)

The corrosion reaction is conditioned by the maintenance of overall electrical neutrality.
Electrons are released by the oxidation of iron in the anodic region and move through the
metal structure to the cathodic region adjacent to the surface, where they react with oxygen
and water to form hydroxyl ions according to the Reactions (2) and (3). Therefore, the
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movement of electrons in the metal and cations in the electrolyte to the anode surfaces must
be counterbalanced by one or more reduction reactions (electron consumption), depending
on the electrolyte pH, on the cathode surface side. The most common reduction reactions
are the following:

O2(g) + 2H2O(l) + 4e− → 4OH−(aq) (2)

2H2O + 2e− → H2 (g) ↑ + 2OH− (3)

2H+ + 2e- → H2 (g) ↑ (4)

The hydroxide ions product of Reactions (2) and (3) can react with the iron (II) ions to
produce a precipitate of iron (II) hydroxide according to Reaction (5).

Fe2+(aq) + 2OH−(aq)→ Fe(OH)2(s) (5)

In the presence of dissolved oxygen, this is quickly oxidized further to ferric oxyhy-
droxide and hematite according to Reactions (6) and (7), respectively:

2Fe(OH)2 + O→ 2FeOOH + H2O (6)

4Fe(OH)2(s) + O2(g)→ 2Fe2O3·H2O(s) + 2H2O(l) (7)

To limit the deleterious corrosion effect on metallic material properties, different
protective approaches were developed, such as cathodic or anodic polarization, passive
or active coating [3], etc. Among these approaches, the use of inhibitor layers as passive
coatings is the most popular. The efficiency of such coating depends on different parameters
such as the inhibitor chemical composition [4], concentration [5], its interaction with the
metal surface [6], temperature [7] and pH [8]. Furthermore, various quantum chemical
calculations were used to illustrate the dependence of the corrosion inhibition efficiency of
the coatings on the molecular structures of the inhibitors forming them [9,10].

The major limitations of inhibitor layers’ efficiency on the surface of metallic materials
as anticorrosion passive coatings are related to adhesion and compactness. The adhesion
of the inhibitor layers could be discussed in terms of adsorption of the surfactant and
its compactness through its molecular structure. The inhibitors’ adsorption could be
physisorption-driven by the weak electrostatic interactions due to the van der Waals forces
or could be chemisorption driven by a strong chemical bonding. This will depend on
the specific interaction between different functional groups of used compounds and the
surface of metal materials to protect. The most used organic inhibitors contain oxygen,
sulfur and nitrogen atoms or aromatic heterocycle and/or double or treble bonds [11,12].
Among these organic compounds, cationic salts and those with ammonium group have
proven their efficiency as an anticorrosion passive coating for steel and iron in an acidic
medium [13]. Furthermore, it was also shown that aliphatic and aromatic substituents play
a role in their anticorrosion efficiency [14–18]. Heterocyclic compounds bearing nitrogen
atoms were reported to provide better anticorrosion efficiency than ammonium cation
with only aliphatic substituents [16]. The anticorrosion efficiency was also shown to be
improved with the increase in the alkyl chain length of the aliphatic substituents [19]. Since
the surfactant is formed by a hydrophilic group and a hydrophobic chain, the adsorption
on the surface is carried out by the hydrophilic group, and the hydrophobic chain remains
oriented towards the water to minimize the interactions between the surfactant-based
coating and the aqueous solvent.

Different inhibition efficiencies ranging from 50% to 99.5% were reported in the
literature for quaternary ammonium surfactants [20–24]. This inhibition performance
depends on the surfactant structure and properties, aggressive media and operating con-
ditions. For example, Hergaz et al. reported an efficiency of about 99.5% of N-(3-(2-
(phenyldiethylammonio)acetoxy)propyl)-N,N-dimetyldodecan-1-aminium chloride bro-
mide at concentration of 5 × 10−3 M as an inhibitor for API ×65 steel pipeline in 1 M
HCl [20]. They explain this performance by the inhibitor properties in terms of the presence
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of aromatic and alkyl chain substituents. They claim that the free aromatic groups with
planar orientation on the substrate increase the surfactant coordination bonds with the
steel substrate, and the alkyl chain enhances its packing and hydrophobic character.

Additionally, the inhibitor adsorption strength also depends on the chemical compo-
sition of the metal surface and the conditions in which the protection takes place, such
as the temperature, the applied potential and the aggressive environment, as reported
by different authors [25–29]. Furthermore, among the methods used for metal surface
functionalization, electrografting is well known in the literature to enable the formation of
bonding with covalent nature [30]. Little work has been published on the electrografting of
quaternary ammonium surfactants for anti-corrosion applications.

The adsorption of the inhibitors on the metal surface forms a more or less compact
layer, depending on the molecular structure of the inhibitor, which can change the wetting
properties of the inhibitor-based coating. For hydrophobic or superhydrophobic coating
on the metal surfaces, the diffusion of the aggressive ions through the layer is strongly
reduced, which can enhance the anticorrosion efficiency of inhibitors’ coating by limiting
the interaction of metal surface with the aggressive ions [31]. It is well established in the
literature that the anticorrosion efficiency increases with the contact angle characterizing the
wetting properties of metal-coated surface [32,33]. In addition, the anticorrosion efficiency
depends on the critical micelle concentrations (CMC) of inhibitors [34,35]. Around the
CMC, maximum surface coverage by the inhibitor molecules can be achieved and the
anti-corrosion effectiveness should increase.

In the present work, cationic surfactants with different aliphatic, aromatic and hetero-
cyclic substituents such as benzyldimethylphenylammonium chloride (1), N1,N2-dibenzyl-
N1,N1,N2,N2-tetramethylethane-1,2-diammonium dichloride (2), benzyldodecyldiethy-
lammonium chloride (3), cetylpyridinium bromide (4) and dodecylpyridinium bromide
(5) were used to prepare a coating on the steel surface, the anti-corrosion effectiveness of
which was evaluated using the electrochemical Tafel polarization technique. The influence
of surfactant properties in terms of molecular structure, critical micelle concentration and
wetting properties on the anti-corrosion effectiveness of the prepared coating was explored
and discussed for better understanding of the protection mechanism.

2. Materials and Methods

For the synthesis of cetylpyridinium bromide (surfactant 4), a mixture of 0.05 mol of
pyridine and 0.05 mol of dodecylbromide in 10 mL of acetone was refluxed for 1 h. The
reaction mixture was cooled, and the obtained product was filtered and dried in a vacuum
desiccator (m.p. 47–50 ◦C, yield 98.0%). Elementary analysis of the synthesized compound
was found in % as follows: C, 62.15; H, 9.16; Br, 24.31; N, 4.22. Calculated amounts in %
were as follows: C, 62.19; H, 9.21; Br, 24.34; N, 4.27.

Ammonium salts (surfactants 1–5) were synthesized using a similar reaction. The
corresponding molecular formula and nominations are depicted in Table 1.

The used steel has the following chemical composition (wt %): 0.22 C, 0.65 Mn, 0.17 Si,
0.04 P, 0.05 S, 0.08 As, 0.3 Ni, Cu, Cr and balanced Fe. The electrodes were prepared
according to the following steps. At the first stage, the steel electrodes were abraded with
a series of emery papers (grade 400–2400), washed with acetone and distilled water, and
then dried in the air. The surface of the steel electrodes was cleaned under sonication for
10 min in ethanol first, and then in ultrapure water. The steel electrode was sealed with
epoxy resin, and the exposed cross-sectional area was 0.2 cm2. After drying the electrode
surface under argon stream, it was modified in a second stage by electrografting.

Prepared cationic surfactants were used to functionalize the steel electrodes’ surface
using the electro-reduction method. In the case of cetylpyridinium bromide molecules, the
electrolyte was prepared in 20 ml solution of acetonitrile, in which 0.04 g cetylpyridinium
bromide and 0.6 g of tetrabutylammonium tetrafluoroborate acid were dissolved under
stirring at ambient temperature for 20 min. Furthermore, the electrografting process was
performed using the voltammetry cyclic technique in the potential range between −1 V
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and +0 V vs. SCE during different voltammetry cycles 12 and 24. The same procedure
was performed for other prepared cationic surfactants. The surfactant solutions used for
electrografting were not degassed.

Table 1. Chemical nomenclature and chemical formulas of indicated prepared surfactants.

Surfactant 1
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dodecylpyridinium bromide

The electrochemical measurements (Tafel polarization curves) were performed with a
Metrohm Autolab PGSTAT 12 Potentiostat and achieved at room temperature without any
further stirring. A conventional three-electrode setup was used, in which prepared steel
was used as a working electrode, platinum sheet as a counter electrode and Ag/AgCl as a
reference electrode. Before starting the measurements, the electrodes were immersed in the
electrolyte solution at open circuit potential (OCP) for 20 min, which is the time necessary
to reach a steady state. The potentiodynamic polarization curves were recorded in the
potential range of −1.3 to +0.3 V vs. Ag/AgCl (from cathodic potential to anodic potential)
with a scan rate of 5 mV/s. The grafting was achieved during different voltammetry cycles,
12 and 24. The electrolytes used for electrochemical measurements were not degassed.

The roughness of the prepared thin films was determined by stylus profilometry using
a Dektak8 Bruker stylus profiler with a tip radius of 12.5 µm. The surface is characterized
by its measured geometrical roughness, Rq, defined as the root mean square average of the
profile height deviation from the mean line recorded within the evaluation line.

The morphology of the bare steel electrode surface and modified with inhibitors is
characterized using a high-resolution Ultra 55 Zeiss FEG scanning electron microscope
(FEGSEM) operating at an acceleration voltage of 10 kV.

The chemical composition of prepared cationic surfactants is determined by X-ray
photoelectron spectroscopy (XPS) and the measurements are performed on a Thermo
Electron ESCALAB 250 spectrometer operating at about 10−9 bar and fitted with a micro-
focused, monochromatic Al Kα X-ray source (hυ = 1486.6 eV). Survey spectra were recorded
with the pass energy of 100 eV at a step size of 1 eV. High-resolution spectra of the Fe 2p,
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Cr 2p, Ni 2p, Mo 3d, O 1s, S 2p, Cl 2p and C 1s core level regions were recorded with a pass
energy of 20 eV at a step size of 0.1 eV. The take-off angle of the analyzed photoelectrons
was 90◦. The binding energies (BE) were calibrated by setting the C 1s signal corresponding
to olefinic bonds at 285.0 eV.

The infrared transmittance measurements were carried out using a Nicolet In 10 appa-
ratus within the spectral range between 500 and 3500 cm−1.

The wetting properties of the prepared steel electrodes surface in terms of static
contact angle were determined by using a Krüss DSA10 contact angle measuring apparatus,
equipped with a CCD camera. A 3 ml droplet of water purified by a milli-Q System
(Millipore, electric resistivity 18.2 MΩ.cm) was used for these measurements.

3. Results

The structure of synthesized compounds was characterized by Nuclear Magnetic
Resonance (NMR) and IR spectroscopes. The chemical shifts of the signals relevant to
the 1H and 13C NMR spectra are the following for pyridinium bromide (surfactant 5): 1H
NMR (400 MHz, DMSO-d6) 0.84 (3H, t, J = 6.7 Hz, CH3); 1.16–1.30 (26H, m); 1.85–1.95 (2H,
m); 4.62 (2H, t, J = 7.6 Hz, N-CH2); 8.17 (2H, dd, J = 6.6, 7.6, Py-Hβ); 8.62 (1H, tt, J = 1.2,
7.6 Hz, Py-Hγ); 9.15 (2H, dd, J = 1.2, 6.6 Hz, Py-Hα). 13C NMR (101 MHz, DMSO-d6) 13.94;
22.10; 25.40; 28.41; 28.72; 28.81; 28.94; 29.02; 29.06 (br); 30.69; 30.75; 31.30; 60.70; 128.09;
144.76; 145.49.

The IR spectroscopy characterization of the synthesized surfactants is shown in
Figure 1. The bands located in the region from 1120 to 1018 cm−1 and from 850 to 750 cm−1

were assigned to asymmetrical and symmetrical stretching modes of C-N-C [27], whereas
the bands at 2920 and 2851 cm−1 were attributed to the asymmetrical and symmetrical
stretching mode of Csp3-H, respectively. Furthermore, the bands located at 711 cm−1 were
attributed to (CH2)n rocking, and at 1246 cm−1 to CH3 symmetric bending and finally
1461 cm−1 to CH2 asymmetric bending. These infrared bands’ characteristics confirm the
existence of linear alkane chain substituents in the synthesized surfactants. However, the
bands located at 1615 and 922 cm−1 attributed to the stretching modes of C=C and C-H
confirm the presence of alkene chain substituents in the molecular structure of prepared
surfactants. The large band located at 3436 cm−1 was attributed to the stretching of O-H
bending. All the prepared surfactants share the same functional groups and in turn the
same chemical bonds.
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The steel electrodes were polished by sanding paper of various grain sizes as described
in the experimental section, and the average surface roughness (RMS) was measured by
using the profilometer. The measured Rq is about 2.41 nm for polished steel electrodes. Ad-
ditionally, their morphology was characterized by FEGSEM, and the obtained patterns are
depicted in Figure 2. Aligned strips in a given direction dominate the surface morphology.
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After the polishing step, the steel electrodes were modified with synthesized sur-
factants, using the electrografting method described in the experimental section. The
electrografting of prepared compounds was achieved by the voltammetry cyclic method
using different numbers of voltammetry cycles, 12 and 24 (Figure 3). To evaluate the success
of the grafting process, the surface morphology of bare and coated steel was investigated
by scanning electron microscopy (FEGSEM) and X-ray photoelectron spectroscopy (XPS).

XPS characterization of bare and grafted electrodes was achieved, and the correspond-
ing survey spectra were compared (Figure 4a). From C1s core level spectra of bare and
grafted steel electrode (Figure 4b), it can be observed that on the bare steel electrode, a
weak signal was detected, whereas on the grafted steel electrode, there is the appearance
of intense peaks corresponding to C1s core level and assigned to carbon of aliphatic and
cyclic substituents (Figure 4b). These results indicate the existence of large number of
carbon atoms on the surface of the steel electrodes, which confirms the success of the
grafting process.
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voltammetry cycles as indicated.

Additionally, the appearance of N 1s core levels after the grafting process confirms
its success (Figure 4c). The surfactants were used to modify the steel electrodes surface,
content N atoms and not the steel electrode. In fact, N 1s core level spectra are characterized
by one peak located at 408.75 eV, which corresponds to chemical environments of N
atoms, present in modified steel electrodes and absent for bare steel electrodes without
surfactant modification (Figure 4c). The peak at 401.25 eV present before and after grafting
is associated with surface contamination. The other surfactants were checked using the
XPS characterization and the same procedure was followed to confirm the success of the
electrode grafting.

Further confirmation of the surfactants’ electrografting success was provided by the
FEGSEM characterization. It can be observed from Figure 5 that the surface strip’s structure
observed after the polishing process disappears after the grafting process, when the black
domains appear on the surface. This confirms the adsorption of surfactants layer on
the steel electrodes surface, which completely hid the underlying strips’ structure (insert
Figure 5a,b). Furthermore, the effectiveness of the prepared inhibitor thin film depends
on the length and structure of the carbon chain of the organic molecule grafted onto the
electrode surface, as well as the electrografting conditions [28].

In order to provide additional confirmation of surfactants electrografting success,
the wetting properties of the grafted steel with synthesized surfactants were investigated,
and the corresponding water contact angle measurements were conducted. The obtained
results are reported on Figure 6, and it can be observed that there are variations of the
contact angle after the steel surface grafting. After polishing, the bare steel electrode
exhibits hydrophilic behavior with a contact angle near 63.7◦. After the grafting process,
the water contact angles of the modified steel electrodes increase to between 70◦ and 90◦,
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with hydrophobic behavior for surfactant 3. The change in contact angle is well known to
confirm the efficiency of the grafting process and the formation of surfactant thin films.

Indeed, the change in contact angle is very sensitive to the molecular structure on
the substrate surface and provides crucial information regarding the compactness of the
molecules. A high contact angle corresponds to an ordered molecular structure at the
substrate surface, and to weaker polar interactions between the surfactant layer and the
aqueous solution.
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The Tafel polarization curves of tested modified steel electrodes are depicted in
Figures 7 and 8. The corrosion current (Icorr) and corrosion potential (Ecorr), as well as
the cathodic (bc) and anodic (ba) slopes, are determined by extrapolating the linear region
of the plots. The extracted parameters from Tafel polarization curves are presented in
Table 2. Usually, higher corrosion potential Ecorr and lower corrosion current Icorr values
characterize the corrosion resistance effectiveness of the surfactant layer. Furthermore, the
values of cathodic (bc) and anodic (ba) slopes obtained from the Tafel curves show a slight
shift compared to those of bare steel, which confirms that the surfactants have an inhibition
action on the corrosion reaction (Table 2).

From Figure 7, it can be observed that both cathodic and anodic Tafel curves cor-
responding to bare steel and modified steel with surfactants 1, 2, 4 and 5 are parallel,
which suggest that these surfactants in the indicated aggressive solution do not change
the mechanism of metal dissolution and the hydrogen evolution reaction [13]. In addi-
tion, it is observed that the grafted steel, during different numbers of voltammetry cycles,
shows low corrosion current variation compared to that of the bare steel electrode. Further-
more, it can be observed from Figure 7 that the Ecorr values are slightly shifted toward
both cathodic and anodic potentials, without any definite trend. This reveals that these
cationic surfactants provide very weak anodic and cathodic inhibitions of the corrosion
reaction. Additionally, very weak improvement was observed with the number of tested
electrografting cycles (12 and 24).
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Table 2. Extracted parameters from Tafel polarization curves for different prepared surfactants and indicated conditions of
concentration, media and number of cycles.

NaCl

I Corr µA E Corr (mV) Corr Rate mm/year ba (mV dec−1) bc (mV dec−1)

Surf 1, 0.005 M 18 −481.4 21.36 × 10−2 73.5 79.4

Surf 1, 0.0002 M 1.139 −677.3 1.32 × 10−2 18.5 42.8

Surf 2, 0.005 M 0.761 −673.4 0.88 × 10−2 15.8 24.1

Surf 2, 0.00002 M 0.521 −812.7 0.61 × 10−2 24.5 42.7

Surf 4, 0.005 M 0.833 −745.9 0.97 × 10−2 21.6 54.9

Surf 4, 0.0002 M 0.253 −823.3 0.29 × 10−2 13.4 14.5

Surf 5, 0.005 M 0.056 −940.9 0.02 × 10−2 5.5 6.7

Surf 5, 0.0002 M 1.391 −636.5 1.62 × 10−2 12.7 31.3

Surf 3, 0.005 M, 12 Cyc 1.168 −960.0 1.36 × 10−2 33.2 39.2

Surf 3, 0.005 M, 24, Cyc 0.012 −535.9 0.02 × 10−2 18.7 20.9

Surf 3, 0.0002 M, 12 Cyc 0.849 −679.3 0.99 × 10−2 18.6 18.7

Surf 3, 0.0002 M, 24, Cyc 6.153 −613.7 7.15 × 10−2 34.2 54.5

Bare steel 0.417 −930.5 0.49 × 10−2 14.5 19.5
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Table 2. Cont.

H2SO4

I corr µA E corr (mV) Corr rate mm/year ba (mV dec−1) bc (mV dec−1)

Surf 1, 0.005 M 25.664 −15.81 0.0029 × 10−2 12.02 13.8

Surf 1, 0.0002 M 33.976 −839.7 39.476 × 10−2 21.3 45.7

Surf 2, 0.005 M 23.838 −441.3 27.7 × 10−2 19.0 21.0

Surf 2, 0.00002 M 7.952 −711.8 9.24 × 10−2 18.3 40.6

Surf 4, 0.005 M 8.625 −794.6 10.023 × 10−2 19.0 24.4

Surf 4, 0.0002 M 9.153 −424.1 10.636 × 10−2 15.7 19.1

Surf 5, 0.005 M 1.551 −1055.1 1.8024 × 10−2 9.1 12.9

Surf 5, 0.0002 M 16.05 −451.0 18.65 × 10−2 17.6 18.6

Surf 3, 0.005 M, 12 Cyc 4.213 −947.3 4.8958 × 10−2 9.5 22.0

Surf 3, 0.005 M, 24, Cyc 0.022 −302.6 0.0255 × 10−2 13.4 23.8

Surf 3, 0.0002 M, 12 Cyc 36.306 −405.5 42.187 × 10−2 12.3 22.2

Surf 3, 0.0002 M, 24, Cyc 8.2021 −467.3 9.5308 × 10−2 15.0 27.2

Bare steel 5.561 −711.3 6.462 × 10−2 15.4 21.3

HCl

I corr µA E corr (mV) Corr rate mm/year ba (mV dec−1) bc (mV dec−1)

Surf 1, 0.005 M 7.17 −445.9 8.34 × 10−2 9.7 16.8

Surf 1, 0.0002 M 4.814 −728.9 5.59 × 10−2 51.8 35.4

Surf 2, 0.005 M 8.659 −467.6 10.062 × 10−2 17.9 25.7

Surf 2, 0.00002 M 1.500 −821.4 1.7431 × 10−2 23.3 32.0

Surf 4, 0.005 M 1.042 −785.5 1.211 × 10−2 20.6 22.1

Surf 4, 0.0002 M 4.114 −473.9 4.7803 × 10−2 14..2 25.0

Surf 5, 0.005 M 0.176 −945.8 0.2041 × 10−2 15.9 6.7

Surf 5, 0.0002 M 4.114 −486.9 4.7519 × 10−2 16.7 22.7

Surf 3, 0.005 M, 12 Cyc 0.956 −818.2 1.1103 × 10−2 12.5 15.6

Surf 3, 0.005 M, 24, Cyc 0.003 −560.6 0.0028 × 10−2 20.9 27.3

Surf 3, 0.0002 M, 12 Cyc 11.954 −429.4 13.89 × 10−2 22.1 28.3

Surf 3, 0.0002 M, 24, Cyc 50.25 −455.7 58.425 × 10−2 46.4 67.0

Bare steel 0.954 −907.7 1.1089 × 10−2 17.4 19.9

As evidenced from Figure 8, surfactant 3 shows the best anticorrosion efficiency
in different aggressive media, among the grafted layer from the other surfactants. In
addition, it can be noted that the anticorrosion efficiency of surfactant 3 layer is effective
in HCl, H2SO4 and NaCl aggressive solutions. Furthermore, it can be observed that the
corrosion current decreases compared to bare steel in HCl solution and the corrosion
potential shifts to more positive potentials, with the number of electrografting cycles and
surfactant concentration. This suggests the enhancement of the anticorrosion efficiency of
the surfactant 3 grafted layer, with the number of electrografting cycles, which could be
explained by the increase in surfactant molecules grafted on the surface of steel substrate.
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The significant decrease in the current density was ascribed to the inhibitive barrier
formed by the surfactant 3 layer on the steel surface, protecting the anodic and cathodic
sites and strongly slowing the corrosive ion diffusion to the metal surface. The corrosion
current (Icorr) of the surfactant 3 layer was found to decrease by 3 times, which confirms
the high performance of surfactant 3 layer as an anticorrosion coating. The inhibition
efficiency, η, and the rate surface coverage, θ, have been reported in the literature, to be
calculated using the following equations [33]

η =
icorr− iocorr

iocorr
× 100 (8)

θ =
icorr− io (corr)

io (corr)
(9)

where io (corr) and icorr correspond to the current density with the presence and the
absence of inhibitor on steel surface, respectively. Using Equation (8), the inhibition
efficiencies were calculated for surfactant 3 (0.005 M) in different media, and the obtained
values are 97.03%, 99.74% and 99.61% in NaCl, HCl and H2SO4 media, respectively, after
24 voltammetry cycles. In addition, the surface coverage rate was calculated using Equation
(9) to be 0.97, 0.997 and 0.996 for surfactant 3 (0.005 M) in NaCl, HCl and H2SO4 media,
respectively, after 24 voltammetry cycles. To the best of our knowledge, surfactant 3 shows
record inhibition efficiency with a simpler structure compared to those surfactants reported
in the literature [20–24].

To explain the higher anticorrosion efficiency of surfactant 3 compared to other syn-
thesized surfactants, it is important to discuss their properties. In fact, their structure is an
important parameter to take into account. As mentioned previously, the cationic surfac-
tant with the ammonium group exhibits efficient anticorrosion properties, and it is also
enhanced by long aliphatic and aromatic substituents. It is clear from these results that the
optimization of the surfactant anticorrosion properties must go through the synthesis of the
surfactant, which include both mentioned substituents. By comparing the structure of the
prepared surfactant, it is clear that surfactant 3 includes both substituents (Table 1), whose
synergetic effect could explain its effective anticorrosion properties. In fact, long aliphatic
alkyl chain could ensure a high compact barrier layer, and both ammonium group and
aromatic substituent could enable strong adsorption of the surfactant on the surface [14].

The anticorrosion efficiency of surfactant 3 could also be explained by its wetting
property. It can be observed from Figure 6 that the contact angle corresponding to the
surfactant 3 layer is about 91◦ and therefore exhibits a hydrophobic behavior. The surfactant
3 layer exhibits a higher hydrophobic character and about a 3 times lower corrosion rate
than the bare steel electrode. This shows that the hydrophobic character of the surfactant
3 layer plays a role in its anticorrosion efficiency, compared to other surfactants and the
bare steel electrode in the tested aggressive media (HCl, H2SO4, NaCl). The enhanced
anti-corrosion efficiency with the layer hydrophobic character was observed by different
authors [32,33] and was explained by the reduced wetted area on the solid surface in
contact with the aggressive solution. In fact, the hydrophobic property of the surfactant
3 layer is the signature of its high close packing, which will improve the effectiveness of its
barrier effect by keeping the corrosive media away from the surface of the steel electrode,
thus generating better anticorrosion protection. It has been reported in the literature that
the packing density and the rate of surfactant layer formation depend on the position
of the aromatic group in the alkyl chain. Surfactants with a longer alkyl chain, oriented
toward the corrosive environment, exhibit faster layer formation and generally higher
close packing density [36]. In fact, the alkyl chain could act as a driving force to form the
surfactant layer through the optimization of van der Waals forces. This could explain the
performance of surfactant 3 compared to surfactants 1 and 2.

Further understanding of our experiments is provided by the FEGSEM patterns in
Figure 9. It can be observed that the grafted steel electrode is heterogeneous in terms
of color and structure. The black and gray colors correspond most likely to the grafted



Coatings 2021, 11, 1512 14 of 19

surfactant layer and the slightly corroded steel surface areas, respectively, whereas cracked
and nanostructured regions could be assigned to the thick oxide film formed during the
corrosion process. It can be noted that the black areas are not corroded, and thus are likely
more protected, whereas the gray areas are corroded at different rates. The surfactant
density could explain these results on the steel surface; likely, black regions correspond to
the surfactant layer with higher close packing density (high surface coverage) compared to
those of the gray color. Additionally, the regions with the gray color are made of monolayer
surfactants with different low densities (low surface coverage), which could explain the
fact that this region has weak protection, and it is corroded with different rates.
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For surfactant 3, it can be observed that the layer covers a large surface area of steel
electrode (Figure 10b) compared to other surfactants, which form a very discontinuous
layer with many islands (Figure 10c).
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The anticorrosion efficiency of ammonium surfactants could also be explained by its
interaction with the substrate surface. Indeed, all surfactants interact with the substrate via
their N atom and the delocalized π electrons of the phenyl substituents, if any. Furthermore,
the bridge between the ammonium cation and the phenyl substituent favors the interaction
between the substrate and the aromatic group, which more easily undergoes different
orientations to reach the equilibrium state. Additionally, this favors the strong adsorption
and compactness of these surfactants on the substrate, which play a crucial role in its
anticorrosion efficiency.

In fact, the electrografting of the surfactants on the substrate takes place through the
electron exchange between the electron of nitrogen atom and the low-energy d-orbitals
of iron surface atoms. However, the electron donor property and electron availability of
different groups favors the electron exchange induced by the applied potential. In addition
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to this electronic aspect, the low steric effect of the surfactant’s substituents could play an
important role in the success of the electrografting process.

From the present results, the low-rate coverage of surfactant 1, 2, 4 and 5 ranging from
0.4 to 0.55, as observed from the FEGSEM experiments (Figure 10c), could be explained by
their low electrografting on the surface, because of steric effect and/or electron availability
for electron exchange at the applied potential. In fact, electro-delocalization could offer
several possibilities for the surfactant electrografting, which could lead to the formation of
a disordered layer with a low packing density. The rate of coverage of the electrode surface
varies for each surfactant at the same concentration, which indicates that the surfactant’s
structure and assembly also play a major role.

To better understand the observed behaviors, we considered the assembly of surfac-
tants into micelles [37], and we plotted the conductivity versus different concentrations for
each surfactant. From these curves, we can deduce the critical micellar concentration of
each surfactant, which is the intersection of the two linear behaviors of the conductivity
versus the concentrations [37].

The critical micelle concentration (CMC) is one of the surfactant parameters to be
considered for the effectiveness of surfactant-based corrosion inhibitors. Increasing the
surfactant concentration below the CMC promotes surfactant aggregation at the metal
interface, which reduces surface tension. Above the CMC, the metal surface is saturated
with surfactant molecules and the excess molecules aggregate in the solution to form
micelles or multilayers of surfactants at the metal interface. As a result, the surface tension
and corrosion rate are not disturbed [38].

By comparing the critical micelle concentration (Ccmc) of each surfactant with the
concentration of about 0.005 M used for the experiments, it can be noted that for surfactant
3, the Ccmc is higher than the used concentration, whereas for other surfactants, the Ccmc
is lower than the used concentration. In the light of these comparisons, the obtained
electrochemical results could be explained as follows: for surfactant 3, as its Ccmc is higher
than the used concentration (Figure 11, Table 3), the conductivity change is not clear from
the curve (Figure 11), which means that it will take place at a higher concentration. In this
situation, the better results of surfactant 3, whose CMC is higher than its concentration
(Table 3), can be explained by the fact that the electrografting process is the driving force for
the saturation of the metal interface and not the surfactant concentration. If we consider that
the concentration of surfactant above the CMC should cause the aggregation of surfactant
at the metal interface to reach a monolayer saturation, this would result in better protection
of the metal by the surfactant. This is not the case, according to our results for surfactants 1,
2, 4 and 5 in terms of nonhomogeneous surfactant layer on the surface of the steel electrode
(Figure 10), which reduces its anticorrosion efficiency. This suggests that CMC is not a
determining parameter in the anti-corrosion efficiency of these electrografted surfactant
layers. There is no competition between the formation of micelles from the free monomers
of the surfactants and their grafting onto the electrode surface. In fact, the exceeding free
monomers of the surfactants aggregate to form micelles in solution [38].

By choosing the lower concentration (0.0002 M) of surfactant 3, it can be seen in Table 2
that the corrosion current becomes higher, which could be explained by lower available
free surfactants to be electrografted on the steel surface to form a close packing surfactant
layer with a high barrier effect. This confirms that the concentration and the number
of voltammetric cycles are the determining parameters of the saturation of the metal
surface by the surfactant and, consequently, of the anti-corrosion efficiency of the surfactant
layer formed.
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Table 3. Critical micelle concentration (CMC) of synthesized cationic surfactants obtained from
Figure 11.

Surfactant 1 2 3 4 5

CCMC 0.0005 0.00072 - 0.00034 0.0002

4. Conclusions

In summary, different cationic surfactants based on various aliphatic and aromatic
ammonium cations were synthesised and used to prepare coatings, whose anticorrosive per-
formance was evaluated for steel protection. It was demonstrated, by different techniques,
that prepared surfactants were successfully electrografted on the polished steel electrode
surface. Among the synthesized molecules, only surfactant 3 enabled the hydrophilic-to-
hydrophobic transition of the grafted electrodes’ surface and protection against corrosion
for steel in different aggressive media (HCl, NaCl and H2SO4). The analysis of Ecorr and
Icorr of the synthesized surfactants shows that surfactant 3 remarkably limits the diffusion
of corrosive ions to the steel surface, which protects the metal from dissolution through the
synergetic effect of barrier and hydrophobic characters provided by the electrografted sur-
factant coating. The corrosion rate of the surfactant layer was found to decrease up to three
times in NaCl, which proved its high anticorrosion performance with efficiency of around
99%. Finally, it has been shown that the choice of surfactant concentration is independent
of its Ccmc, and the formation of a homogeneous and close packing surfactant layer with
efficient anticorrosion properties depends on the surfactant concentration and the number
of voltammetry cycles. The molecular structure of surfactants is a crucial parameter to
consider in the design of inhibitors for improved efficiency of the anticorrosion coatings
they can form. The hydrophobic and barrier properties of the coatings are the consequence
of a synergistic effect of the aliphatic and aromatic substituents of the surfactants.
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