STUDY OF FREE-CONVECTIVE HEAT EXCHANGE OF AIR-COOLABLE FINNED TUBE BUNDLES INTENSIFIED BY EXHAUST SHAFT

A. B. Sukhotskii, G.S.Marshalova, S. V.Zditovetskaya, and E.S. Danilchik
UDC 536.24

Abstract

The results of experimental studies of free-convective heat transfer of single-, double- and four-row bundles of finned tubes without and with an exhaust shaft are presented. It is shown that the inter-tube spacing significantly affects the energy efficiency of the bundle. The optimum inter-tube spacing is 61 mm for single-row, about 70 mm for double-row, and over 70 mm for four-row bundles. With increase of the number of rows in the bundle the specific capacity of the bundle increases, but the rate of its increase decreases. The specific heat capacity of a single-row bundle with an inter-tube spacing of 58 mm is higher than with an inter-tube spacing of 64 mm . The specific heat capacity of two- and four-row bundles is less at low exhaust shaft heights, but it is more when the relative shaft height is more than 0.14 and 0.26 , respectively. The heat transfer of the bundles can be increased (more than threefold) using optimal ratio of the outlet section of the shaft and the flow capacity of the tube.

Keywords: air-coolable devices, bimetallic finned tube, staggered tube bundle, free-convective heat transfer, exhaust shaft.

Air-coolable heat exchangers (ACH) are in high demand in petrochemical, gas, and food industries, electronic engineering, refrigeration, etc. because of their eco-friendliness and operation without cooling water [1].

For ACH operation it is important to ensure steady flow of the cooling air without electric power consumption for driving the fans. The range of temperatures of the surrounding air at which ACH could be used under free convection conditions is limited. However, high heat efficiency of the heat exchanger in a wide range of temperatures of the surrounding air can be ensured by installing an exhaust shaft above the ACH.

Aside from the types and parameters of the heat exchanger tubes, dimensions and design parameters of the ACH , flow section, and exhaust shaft height also markedly affect the energy efficiency of a system consisting of an ACH and an exhaust shaft. The results of the experimental and numerical studies of the ACH built of finned tubes with an exhaust shaft are furnished in [2-7].

The goal of this work was experimental study and generalization of the data on convective heat transfer from horizontal bundles of finned tubes to vertical air flows generated by an exhaust shaft of controllable height.

Single-, two- and four-row of bundles of horizontally placed finned tubes (six tubes in a row, i.e. $n=6$) with spirally rolled aluminum fins (inter-tube spacings $S_{1}=58,64$, and 70 mm) were studied.

Two- and four-row bundles consisted of even-spaced staggered tubes (six tubes in odd row and five tubes and two half-tubes in even row). The tubes are installed in holes of $4-\mathrm{mm}$ thick plywood boards and the ends of the tubes are shielded by fluoroplastic plugs. The following are the geometric dimensions of the bimetallic finned tube (mm): diameter of finning $d=56.8$, diameter of tube at the base $d_{0}=26.4$, fin height $h=15.2$, fin spacing $s=2.43$, average fin thickness $\Delta=0.55$, length of the finned section of the tube $l=300$. The finning factor $\varphi=21$.

[^0]To eliminate the influence of air circulation in the premises on the experimental results during the studies, the tube bundle was placed in a $0.8 \times 0.8 \times 1.0 \mathrm{~m}$ chamber closed along the perimeter and open at the top and bottom for free air movement.

An exhaust shaft with a rectangular base that turns through a reducer into a cylindrical tube of diameter $d_{\text {sh }}=0.105 \mathrm{~m}$ is installed above the experimental tube bundles for intensifying air flow motion. The shaft height (controllable) $H=0.52,1.16,1.48$, and 2.12 m . To reduce heat losses, the exterior of the shaft is insulated with a $0.02-0.03-\mathrm{m}$ thick layer of mineral fiber.

The heat transfer was studied by the full modeling method. The finned tubes were heated by inserted thermoelectric heaters. The central tube in the bundle was a calorimeter (design of the tube-calorimeter and its temperature sensors are described in [8]).

The design of the experimental unit with its measuring instruments, the method of study and the order of execution of the experiments are described in [9]. In the experiments, the temperature of the tube-calorimeter surface at the base of the fins (arithmetic-mean temperature as per thermocouple readings) varied in the range $T_{\text {amt }}=30-195^{\circ} \mathrm{C}$, the temperature of the air in the chamber $t_{0}=17-27^{\circ} \mathrm{C}$, the mean temperature in the shaft $t_{\text {sh }}=22-125^{\circ} \mathrm{C}$, and the electric power supplied to the calorimeter $W=10-250 \mathrm{~W}$.

The average reduced convective coefficient of heat transfer referred to the full external surface of the tube, $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$:

$$
\begin{equation*}
\alpha_{\mathrm{c}}=\frac{Q_{\mathrm{c}}}{\left(t_{\mathrm{amt}}-t_{0}\right) F}, \tag{1}
\end{equation*}
$$

where Q_{c} is the convective heat flow, $\mathrm{W}, F=\pi l d_{0} \varphi$ is the area of the heat transferring finned surface of the tube, m^{2}.

The heat flow $Q_{\mathrm{c}}(\mathrm{W})$ transferred from the tube to the air by convection is calculated by the equation

$$
\begin{equation*}
Q_{\mathrm{c}}=W-Q_{\mathrm{r}}-Q_{1} \tag{2}
\end{equation*}
$$

where W is electric power supplied to the calorimeter, $\mathrm{W}, Q_{\mathrm{r}}$ is the heat flux removed from the tube by radiation, W [10], Q_{1} are the heat losses through the tube ends and the current conductors, W [11].

The experimental results are presented as dependencies of the Nusselt number on the Raleigh number:

$$
\begin{gather*}
\mathrm{Nu}=\alpha_{\mathrm{c}} d_{0} / \lambda, \tag{3}\\
\mathrm{Ra}=\frac{g \beta d_{0}^{3}\left(t_{\mathrm{amt}}-t_{0}\right)}{\mathrm{v} a}, \tag{4}
\end{gather*}
$$

where λ is the coefficient of thermal conductivity, $\mathrm{W} /(\mathrm{m} \cdot \mathrm{K}), v$ is the coefficient of kinematic viscosity, $\mathrm{m}^{2} / \mathrm{sec}$ a is the coefficient of thermal diffusivity, $\mathrm{m}^{2} / \mathrm{sec}, g$ is the free fall acceleration, $\mathrm{m} / \mathrm{sec}^{2}, \beta$ is the coefficient of thermal expansion, K^{-1}.

The Nusselt and Raleigh numbers as well as the thermophysical properties of the air were determined at the temperature of the surrounding air $t_{0},{ }^{\circ} \mathrm{C}$.

The relationships $\mathrm{Nu}=f(\mathrm{Ra})$ for single- and four-row tube bundles with inter-tube spacing $S_{1}=58,64$, and 70 mm without an exhaust shaft (free convection) and with an exhaust shaft of height $H=0.52-2.12 \mathrm{~m}$ are shown in Fig. 1.

Fig. 1. Relationships of Nusselt number Nu with Raleigh number Ra for various exhaust shaft heights H for single-row (a) and fourrow (b) finned tube bundles with inter-tube spacing: I $-S_{1}=58 \mathrm{~mm}$, II $-S_{1}=64 \mathrm{~mm}$, III $-S_{1}=70 \mathrm{~mm}$.

Fig. 2. Relationships of Nusselt number with transverse tube spacing S_{1} at various shaft heights H for single-row (a), two-row (b), and four-row (c) finned tube bundles at constant Raleigh number $\operatorname{Ra}=10^{5}$.

It is evident from Fig. 1 that, after installation of a shaft, heat transfer of the tube bundles with inter-tube spacings $S_{1}=58$ and 64 mm increases markedly (twofold and more) regardless of the number of rows of tubes in the bundle.

After installation of a shaft with height $H=0.52 \mathrm{~m}$, heat transfer of bundles with inter-tube spacing $S_{1}=$ 70 mm decreased 1.27 times for single-row and 1.13 times for four-row bundles, i.e., more the number of rows in the bundle, the less the decrease of heat transfer. For a single-row bundle, this fact is explained [3] by low resistance of the bundle in comparison with the resistance of the shaft.

Evidently, resistance of the bundle increases with increase of rows, but it does not exceed the resistance of the shaft.

The relationships of Nusselt number with the transverse spacing S_{1} at various shaft heights H for singlerow (a), two-row staggered (b), and four-row staggered (c) finned tube bundles at constant Raleigh number $\mathrm{Ra}=10^{5}$ are shown in Fig. 2.

Under free convections conditions (without an exhaust shaft) increase of inter-tube spacing facilitates increase of convective heat transfer of the bundle up to a certain limit. The optimum inter-tube spacing $\left(S_{1}\right)$ is 61 mm for single-, about 70 mm for two-row, and over 70 mm for four-row finned bundles. If an exhaust shaft is installed above the bundle, an increase in inter-tube spacing (decrease in aerodynamic resistance of the bundle) leads to a decrease in heat transfer, and fewer the rows, greater the influence of spacing. Heat transfer decreases twofold and more with increase of inter-tube spacing from 58 mm to 70 mm .

For the four-row bundle with an exhaust shaft of height $H=1.16 \mathrm{~m}$, change in inter-tube spacing has a negligible effect on heat transfer, and at $H=0.52 \mathrm{~m}$, heat transfer increases by 1.24 times with increase of the inter-tube spacing.

For generalization and analysis of heat transfer processes, precise determination of heat transfer coefficients is essential. For this purpose, criterial equations with physically validated relative dimensions of the investigated object and the determining temperature of the experimental medium (air) are used.

For an exhaust shaft mounted above a heat exchanger tube bundle, the following dimensionless parameters are proposed: $\chi_{\text {sh }}=f_{\text {hole }} / f_{\text {com }}$ is the ratio of narrowing of the outlet section of the shaft $f_{\text {hole }}$ to the compressed section of the bundle $f_{\text {com }} ; H_{\mathrm{e}}=H / d_{\mathrm{e}}$ is the equivalent shaft height (ratio of actual shaft height H to equivalent diameter d_{e} of the bundle).

Use of the parameter H / d_{e} is not physically validated because the air flow velocity through a bundle increases with increase of the height H and the equivalent diameter d_{e}, i.e., the dependence of the coefficient of heat transfer on the parameter H / d_{e} is ambiguous.

To get dimensionless physically validated parameter of the bundle-shaft system, let us use the equation for air flow in the exhaust shaft [12]:

$$
\begin{equation*}
\frac{H g \theta}{w_{\text {hole }}^{2}}=\mathrm{Eu}_{\mathrm{b}} \frac{\rho_{\mathrm{sh}}}{\rho_{\mathrm{b}}} \chi_{\mathrm{sh}}^{2}+\mathrm{Eu}_{\mathrm{fr}}+\mathrm{Eu}_{\text {vort }}-\frac{\psi}{2} \theta \tag{5}
\end{equation*}
$$

where $\theta=\left(\rho_{0}-\rho_{\text {sh }}\right) / \rho_{\text {sh }}$ is the relative difference of air densities, $\rho_{0}, \rho_{s h}, \rho_{b}$ are the average density of air in the environment, in the shaft, and in the bundle, respectively, $\mathrm{kg} / \mathrm{m}^{3}, w_{\text {hole }}$ is the air velocity in the hole of the outlet section of the shaft, $\mathrm{m} / \mathrm{sec}, \mathrm{Eu}_{\mathrm{b}}$ is the Euler number of the tube bundle, $E u_{\mathrm{fr}}=\lambda_{\mathrm{fr}}\left(H-h_{\mathrm{dif}}\right) / 2 d_{\mathrm{sh}}$ is the Euler number of friction of the air flow in the shaft, $E u_{\text {vort }}=5.5\left(\chi_{\text {hole }}-0.03\right) /\left(\chi_{\text {hole }}+0.03\right)$ is the Euler number of vortex of the flow in the shaft, $\psi=1.3$ is the coefficient of formation of a heated air region above the shaft, $h_{\text {dif }}$ is the height of the diffuser above the bundle, λ_{fr} is the coefficient hydraulic friction, $\chi_{\text {hole }}=$ $f_{\text {hole }} / f_{\text {front }}$ is the ratio of the area of internal cross section of the shaft $\left(f_{\text {hole }}=\pi d_{\text {sh }}^{2} / 4\right)$ to the area of the front section of bundle ($\left.f_{\text {front }}=S_{1} n l\right)$.

The equation for the air flow velocity in the hole of the outlet section of the shaft was obtained by using flow rate and heat transfer equations:

$$
\begin{align*}
w_{\text {hole }} & =\frac{G_{v}}{f_{\text {hole }}}=\frac{Q^{\mathrm{c}}+Q_{\mathrm{sh}}^{\mathrm{r}}}{f_{\text {front }} \chi_{\text {hole }} c_{p}\left(t_{\mathrm{sh}}-t_{0}\right)}=\frac{\alpha_{\mathrm{c}+\mathrm{r}} F\left(t_{\mathrm{amt}}-t_{0}\right)}{f_{\text {front }} \chi_{\text {hole }} c_{p}\left(t_{\mathrm{sh}}-t_{0}\right)} \\
& =\frac{\alpha_{\mathrm{c}+\mathrm{r}} d_{0}}{\lambda} \cdot \frac{\lambda}{c_{p} d_{0}} \cdot \frac{F}{f_{\text {front }} \chi_{\text {hole }}} \cdot \frac{t_{\mathrm{amt}}-t_{0}}{t_{\mathrm{sh}}-t_{0}} \\
& =\mathrm{Nu}_{\mathrm{c}+\mathrm{r}} \cdot \frac{a}{d_{0}} \cdot \frac{F}{f_{\text {front }} \chi_{\text {hole }}} \cdot \frac{1}{\theta_{t}}, \tag{6}
\end{align*}
$$

where G_{v} is the volume rate of air flow through the shaft, $\mathrm{m}^{3} / \mathrm{sec}, Q^{\mathrm{c}}$ is the heat transferred from the bundle to the air by convection, $\mathrm{W}, Q_{\mathrm{sh}}^{\mathrm{r}}$ is the heat transferred from the bundle to the shaft by radiation, W [10], $\alpha_{\mathrm{c}+\mathrm{r}}$ is the coefficient of heat transfer from the finned surface of the bundle to the shaft by radiation and to the air by convection, $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right), c_{p}$ is the isobaric volume heat capacity of the air, $\mathrm{J} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right), a=\lambda / c_{p}$ is the coefficient of thermal diffusivity of the air, $\mathrm{m}^{2} / \mathrm{sec}, \theta_{t}=\left(t_{\text {sh }}-t_{0}\right) /\left(t_{\text {amt }}-t_{0}\right)$ is the relative temperature difference in the bundle.

Then

$$
\begin{aligned}
\frac{H g \theta}{w_{\text {hole }}^{2}} & =\frac{H w_{\text {hole }} \theta}{w_{\text {hole }}^{2} \tau} \cdot \chi_{\text {sh }} \cdot \frac{\rho_{\text {sh }}}{\rho_{\mathrm{b}}}=\frac{H}{w_{\text {hole }} \tau} \cdot \chi_{\mathrm{sh}} \cdot \frac{\rho_{\mathrm{sh}}}{\rho_{\mathrm{b}}} \cdot \theta \\
& =\frac{d_{0}^{2}}{\mathrm{Nu}_{\mathrm{c}+\mathrm{r}} a \tau} \cdot \frac{H f_{\text {front }} \chi_{\text {hole }} \chi_{\mathrm{sh}}}{d_{0} F} \cdot \theta \cdot \theta_{t} \cdot \frac{\rho_{\mathrm{sh}}}{\rho_{\mathrm{b}}}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{\operatorname{Pr}}{\mathrm{Nu}_{\mathrm{c}+\mathrm{r}} \mathrm{Fo}} \cdot \frac{H f_{\mathrm{front}} \chi_{\mathrm{hole}} \chi_{\mathrm{sh}}}{d_{0} F} \cdot \theta \cdot \theta_{t} \cdot \frac{\rho_{\mathrm{sh}}}{\rho_{\mathrm{b}}}, \tag{7}
\end{equation*}
$$

where $g=w_{\mathrm{b}} / \tau=\left(w_{\text {hole }} / \tau\right) \cdot \chi_{\text {sh }} \cdot\left(\rho_{\mathrm{sh}} / \rho_{\mathrm{b}}\right), \tau$ is the typical duration of acceleration of the mobile surrounding air to the velocity in the compressed section of the bundle, sec, $\mathrm{Fo}=\nu \tau / d_{0}^{2}$ is the dynamic Fourier number, $\operatorname{Pr}=v / a$ is the Prandtl number.

The ratio of the heat exchange area F and the area of the front section $f_{\text {front }}$ of the bundle

$$
\begin{equation*}
\frac{F}{f_{\text {front }}}=\frac{n z \varphi \cdot \pi d_{0} l}{n S_{1} l}=\frac{z \varphi \cdot \pi d_{0}}{S_{1}} . \tag{8}
\end{equation*}
$$

As a result,

$$
\begin{equation*}
\frac{H g \theta}{w_{\text {hole }}^{2}}=\frac{\operatorname{Pr}}{\mathrm{Nu}_{\mathrm{c}+\mathrm{r}} \mathrm{Fo}} \cdot \frac{H \chi \chi_{\mathrm{sh}}^{2} S_{1}}{d_{0} z \varphi \cdot \pi d_{0}} \cdot \theta \cdot \theta_{t} \cdot \frac{\rho_{\mathrm{sh}}}{\rho_{\mathrm{b}}}, \tag{9}
\end{equation*}
$$

where $\chi_{\text {hole }}=\chi \chi_{\text {sh }}, \chi=f_{\text {com }} / f_{\text {front }}$ is the coefficient of bundle compression (ratio of the area of the compressed section to the area of the front section of the bundle), $z=1,2,4$ is the number of rows of tubes in the bundle, $f_{\text {com }}=l \cdot n \cdot\left(S_{1}-d_{0}-2 h \Delta / s\right)$ is the area of the compressed section of the bundle, m^{2}.

Thus, a final equation that shows the correlation of hydrodynamics and heat exchange in the bundle-shaft system was derived:

$$
\begin{equation*}
H_{\mathrm{rel}} K \cdot \theta \cdot \theta_{t}=\mathrm{Nu}_{\mathrm{c}+\mathrm{r}} \mathrm{Fo} \mathrm{Pr}^{-1} \mathrm{Eu}_{\mathrm{b}-\mathrm{sh}}, \tag{10}
\end{equation*}
$$

where

$$
\mathrm{Eu}_{\mathrm{b}-\mathrm{sh}}=\mathrm{Eu}_{\mathrm{b}}+\left(\mathrm{Eu}_{\mathrm{fr}}+\mathrm{Eu}_{\mathrm{vort}}-\frac{\psi}{2} \theta\right) /\left(\frac{\rho_{\mathrm{sh}}}{\rho_{\mathrm{b}}} \chi_{\mathrm{sh}}^{2}\right)
$$

is the Euler number of the bundle-shaft system which relates to the velocity in the bundle and depends on the coefficients of hydraulic resistance in the tube bundle and the shaft, $H_{\text {rel }}=H /\left(d_{0} \varphi \pi\right)$ is the relative height of the shaft, $\pi d_{0} \varphi$ is the length of the circumference of the flat tube with a surface area equal to the surface area of the finned tube, $\mathrm{m}, K=S_{1} \chi /\left(z d_{0}\right)$ is the coefficient of flow capacity of the bundle.

Tube bundles with different numbers of rows cannot be correctly compared in terms of Nusselt number, i.e., without consideration of the difference in the heat exchange surface.

Therefore, the dependencies of the specific thermal capacity of the bundle $\mathrm{Nu} / K=\mathrm{Nu} \cdot z d_{0} /\left(S_{1} \chi\right)$ on the relative shaft height $H_{\text {rel }}$ for single-row $(z=1)$, two-row $(z=2)$, and four-row $(z=4)$ finned tube bundles with inter-tube spacing $S_{1}=58,64$, and 70 mm at constant Raleigh number $\mathrm{Ra}=10^{5}$ are shown in Fig. 3 .

As evident from Fig. 3b, after installation of an exhaust shaft, the specific heat capacity of bundles with an inter-tube spacing $S_{1}=70 \mathrm{~mm}$ initially decreases (because of high aerodynamic resistance of the shaft compared to the resistance of the bundles), but later increases with the increase in height of the shaft $H_{\text {rel }}$ irrespective of the number rows of tubes, and the values of the heat capacity of bundles with $S_{1}=70 \mathrm{~mm}$ are lower than those of the bundles with smaller spacings (in the entire range of exhaust shaft heights).

Fig. 3. Dependencies of specific thermal capacity Nu / K on relative shaft height $H_{\text {rel }}$ for single-row $(z=1)$, two-row $(z=2)$, and four-row ($z=4$) finned tube bundles with inter-tube spacing $S_{1}=58 \mathrm{~mm}$ (dark signs) and 64 mm (light signs) (a) and $S_{1}=70 \mathrm{~mm}$ (b) at constant Raleigh number $\mathrm{Ra}=10^{5}$.

The specific heat capacity of a single-row bundle with a spacing $S_{1}=58 \mathrm{~mm}$ is higher than that of a bundle with $S_{1}=64 \mathrm{~mm}$. The specific heat capacity of two- and four-row bundles is less than that of single-row bundles at lower exhaust shaft heights, but is higher at relative shaft height $H_{\text {rel }}$ of more than 0.14 (at $z=2$) and more than 0.26 (at $z=4$).

The specific heat capacity of a bundle increases in proportion to the increase in the number of rows of tubes in the entire range of inter-tube spacings S_{1}.

The change in Nu number for multi-row bundles is expressed by the equations (discrepancy $\pm 11 \%$):

$$
\begin{align*}
& \frac{\mathrm{Nu}_{z=2}}{\mathrm{Nu}_{z=1}}=1.04 \frac{S_{1}}{d_{0}}-1.52 \\
& \frac{\mathrm{Nu}_{z=4}}{\mathrm{Nu}_{z=1}}=1.22 \frac{S_{1}}{d_{0}}-2.26 . \tag{11}
\end{align*}
$$

CONCLUSIONS

In the experimental studies of single-, two-, and four-row bundles of finned tubes without and with an exhaust shaft, it was found that inter-tube spacing markedly affects the energy efficiency of the tube bundle and an optimum inter-tube spacing corresponds to each exhaust shaft height level.

The specific heat capacity increases with increase in the number of rows of tubes in the bundle, but the rate of increase of specific capacity diminishes.

The heat transfer of the bundle can be increased considerably (three times and more) by increasing the shaft height, but only at an optimum ratio of the outlet section of the shaft and the coefficient of the flow capacity of the bundle.

REFERENCES

1. V. B. Kuntysh, A. B. Sukhotskii, and A. V. Samorodov, "Switching air cooling device operation to energy saving mode. Engineering solutions with calculation of economic benefit," Khim. Tekhn., No. 6, 20-25 (2013).
2. G. S. Marshalova, A. B. Sukhotskii, and V. B. Kuntysh, "Enhancing energy saving in air cooling devices by intensifying external heat transfer," Chem. Petrol. Eng., 56, No. 1-2, 85-92 (2020).
3. A. B. Sukhotskii and G. S. Sidorik, "Study of mixed convective heat transfer of single-row air coolable heat exchangers with various transverse spacings of tubes," Izv. Vyssh. Uchebn. Zaved. Probl. Energ., No. 19, 3-11 (2017).
4. S. Unger, M. Beyer, H. Pietruske, et al., "Natural convection heat transfer performance of additively manufactured tube bindle heat exchangers with novel fin design," Heat Mass Transfer (2021).
5. A. B. Sukhotskii, "Experimental study of heat transfer of single-row finned-tube bundle with mixed air convection," Energet. Izv. Vuz. Uchebn. Zaved. Energ. Ob'edin. SNG, No. 4, 352-367 (2017).
6. A. B. Sukhotskii and G. S. Sidorik, "Experimental study and generalization of data on intensified convective heat transfer of singlerow bundles of finned tubes in air stream," Energet. Izv. Vuz. Uchebn. Zaved. Energ. Ob'edin. SNG, No. 6, 552-563 (2018).
7. A. B. Sukhotskii and G. S. Marshalova, "Features of gravitational flow of heated air in an exhaust shaft above a multirow finned tube bank," J. Eng. Phys. Thermophys., 92, No. 3, 596-602 (2019).
8. A. B. Sukhotskii, V. N. Farafontov, S. O. Filatov, et al., "Development of a stand and study of free convection of a solitary finned tube tilted at various angles," Tr. BGTU, Ser. 1: Lesn. Khoz., Prirodopolz. Pererab. Vozobnov. Resurs., No. 1, BGTU, Minsk, 169-175 (2017).
9. G. S. Sidorik, "An experimental stand for study of thermal and aerodynamic processes of mixed convective heat exchange of roundfinned tubes and bundles," Tr. BFTU, Ser. 1: Lesn. Khoz., Prirodopolz. Pererab. Vozobnov. Resurs., No. 1, BGTU, Minsk, 85-93 (2018).
10. A. B. Sukhotskii, G. S. Marshalova, and E. S. Danilchik, "Characteristic features of calculation of radiant component of heat flow of a horizontal bundle of finned tubes with an exhaust shaft," Energet. Izv. Vuz. Uchebn. Zaved. Energ. Ob'edinenie SNG, 63, No. 4, 380-388 (2020).
11. A. B. Sukhotskii and G. S. Sidorik, "Intensification of free convection in single-row finned tube bundle in air cooling devices," Tr. BGTU, Ser. 2: Khim. Tekhnol. Biotekhn., Geoekolog., No. 1, 68-74 (2017).
12. G. S. Marshalova, Thermal Calculation and Designing of Air-Cooling Devices with Exhaust Shaft [in Russian], Candidate's dissertation, 01.04.14, Minsk (2019), p. 153.

[^0]: Belarusian State Technological University, Minsk, Belarus; e-mail: alk2905@mail.ru.

