INORGANIC SYNTHESIS AND INDUSTRIAL INORGANIC CHEMISTRY

Features of Phase Formation during "Dry" Neutralization in the System Na₂CO₃–H₂O–H_xAn

A. I. Sumich^{*a*,*} and L. S. Eshchenko^{*b*}

 ^a Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220072 Republic of Belarus
^b Belarusian State Technological University, Minsk, 220006 Republic of Belarus
*e-mail: detergent@tut.by

Received December 31, 2020; revised June 21, 2021; accepted June 21, 2021

Abstract—It was found that during the "dry" neutralization of mono- (acetic) and polybasic (orthophosphoric, citric, sulfuric) acids (H_xAn) in the Na₂CO₃–H₂O–H_xAn system with a molar ratio Na₂CO₃/H_xAn = 1.5–10.5 at the interface, sodium sesquicarbonate (Na₂CO₃·NaHCO₃·2H₂O) crystallizes as a result of decomposition of Na₂CO₃, dissolution of the resulting CO₂ in the surface liquid layer and its interaction with CO₃^{2–} anions with the formation of an equimolar amount of HCO₃[–] anions. The hydrated salts formed during the process (phosphates, acetates, citrates, and sodium sulfates) play the role of binders during the aggregation of particles into granules of a 0.106–1.00 mm size.

Keywords: dry neutralization, detergents, sodium sesquicarbonate, agglomeration

DOI: 10.1134/S1070427221070041

Powdered synthetic detergents are multicomponent mixtures, the main share of which (up to 90 wt %) are salts of inorganic and organic acids (builders) [1]. sesquicarbonate Na₂CO₃·NaHCO₃·2H₂O Sodium is a hypoallergenic and non-caking compound [2, 3], due to which it is increasingly used in builders. Detergents based on this salt are usually produced by simple mechanical blending of sodium sesquicarbonate with other components [4]. In [5] it is shown that Na₂CO₃·NaHCO₃·2H₂O in the builders can be formed by intensive mixing of a powdery mixture of sodium salts containing Na₂CO₃ with a citric acid solution. As the authors note, the reaction mixture upon addition of the acid solution is first moistened, and after a few minutes of blending it turns into a dry powdery state. The "dry" neutralization method consists in preparing powdery builders, when the reaction mixture keeps powdery state upon spraying the acid solutions onto solid alkaline reagents [6].

There are few reports on studies of phase formation in the preparation of builders by "dry" neutralization, although these investigations are of scientific and practical importance. We have found [7, 8] that the content of sodium sesquicarbonate in builders is determined by such factors as the water content in the reaction mixture, the nature of the acid [acetic, citric, orthophosphoric, sulfuric acid (H_xAn)], the Na₂CO₃/ H_xAn molar ratio. It was shown [8] that the formation of the Na₂CO₃·NaHCO₃·2H₂O structure can occur both by crystallization of sodium sesquicarbonate in the surface liquid layer of Na₂CO₃ particles, and by rearrangement of the primary crystal lattice of Na₂CO₃ as a result of the substitution of coplanar Na⁺, coplanar relative to the CO₃^{2–} anions, by H⁺ ions.

This work is aimed at studying the phase formation in the $Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O$ system during the "dry" neutralization of mono- and polybasic acids.

EXPERIMENTAL

The initial reagents used were: Na_2CO_3 (reagent grade, JSC LenReaktiv), H_3PO_4 (food grade, Kazphosphate LLP, food grade), citric, acetic, and H_2SO_4 acids (reagent grade, JSC LenReaktiv).

To study the processes proceeding in the Na_2CO_3 - H_xAn-H_2O system, Na_2CO_3 (particle size less than

Fig. 1. Setup for "dry" neutralization of Na_2CO_3 with acid solutions and determination of the CO_2 volume. (1) reaction vessel, (2) CO_2 volume measuring burette.

0.1 mm) was brought into reaction vessel 1 (Fig. 1). Using a spray device, an acid solution was supplied in an amount corresponding to the Na₂CO₃/H_xAn molar ratio of 4.0–10.5 (for tribasic acids), 2.5–6.7 (for diacids), and 1.5–2.0 (for monobasic acids), and the reaction mixture was intensively blended with the same speed in all experiments.

The acid flow was 2.5-10.5 mL min⁻¹. The temperature was recorded in the reaction vessel, the volume of evolved CO₂ was determined from the volume of the displaced saturated NaCl solution from burette 2.

The CO_2 fraction (%) in the gas phase was calculated by the formula

$$\upsilon = \frac{V_{\rm CO_2}^{\rm red}}{V_{\rm CO_2}^{\rm theor}} \times 100,\tag{1}$$

where $V_{\rm CO2}^{\rm red}$ is the volume of CO₂ released during the "dry" neutralization, reduced to normal conditions (mL); $V_{\rm CO2}^{\rm theor}$ is the theoretically calculated volume of CO₂, reduced to normal conditions assuming complete decomposition of sodium carbonate in accordance with the process equation

$$xNa_2CO_3 + 2H_xAn \rightarrow 2Na_xAn + xH_2O + xCO_2,$$
 (2)
 $x = 1, 2, 3.$

RESULTS AND DISCUSSION

On the temperature change curve 1 (Fig. 2), three sections can be distinguished, characterizing the stages of "dry" neutralization proceeding at different rates. The first section (40–50 s after the start of the experiment) is characterized by a sharp jump in both the temperature of the reaction mixture from 20 to 45°C (in terms of 1 mol of Na₂CO₃) and the volume of released CO₂. In the next 6–7 min (second section), a gradual decrease in temperature to 35–36°C is observed, after which, within

Fig. 2. (1) Temperature in the reaction zone and (2) the proportion of CO_2 in the gas phase vs. "dry" neutralization time in the system Na_2CO_3 -H₂O-H₃PO₄.

RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 94 No. 7 2021

SUMICH, ESHCHENKO

Fig. 3. Scheme of the "dry" neutralization process in the system $Na_2CO_3-H_2O-H_xAn$. (1) Na_2CO_3 surface, (2) surface liquid layer, (3) liquid phase.

10–15 min (third section), the temperature and volume of released CO_2 practically do not vary.

The sharp rise in temperature at the first stage is due to the exothermic process of sodium carbonate hydration [Eq. (3)], and the intense release of CO_2 into the gas

phase occurs as a result of the decomposition of sodium carbonate [Eq. (2)]:

$$Na_2CO_3 + H_2O \rightarrow Na_2CO_3 \cdot H_2O + 1429.73.$$
 (3)

[Eq. (3)], and the intense release of CO_2 into the gas Processes (2) and (3) occur on the surface of **Table 1.** Solubility of carbonate-containing compounds and sodium salts H_xAn vs. temperature

	Solubility, g/100 g H_2O								
Temperature, °C	Na ₂ CO ₃ ^a			N. H(CO)h	Na ₃ PO ₄ ^a		Na ₂ HPO ₄ ^a		
	value	solid phase	NahCO ₃ "	$Na_3H(CO_3)_2$ °	value	solid phase	value	solid phase	
20	21.8	Na ₂ CO ₃ ·10H ₂ O	9.59	18.3	12.1	Na ₃ PO ₄ ·12H ₂ O	7.66	α -Na ₂ HPO ₄ ·12H ₂ O	
25	29.4		10.38	_	14.0		12.14		
30	39.7		11.1	21.15	16.3		24.2	β -Na ₂ HPO ₄ ·12H ₂ O	
35	_	_	_	_	_	_	42.9	$ \begin{array}{l} \beta - Na_2 HPO_4 \cdot 12H_2O + \\ Na_2 HPO_4 \cdot 7H_2O \end{array} $	
40	48.8	Na ₂ CO ₃ ·H ₂ O	12.7	23.95	20.2	Na ₃ PO ₄ ·12H ₂ O	55.1	Na ₂ HPO ₄ ·7H ₂ O	
45	_	_	_	_	_	_	_	-	
50	47.3	Na ₂ CO ₃ ·H ₂ O	_	26.78	29.4	Na ₃ PO ₄ ·12H ₂ O	80.2	Na ₂ HPO ₄ ·2H ₂ O	
55	_	_	_	_	_	_	_	_	
60	46.4	Na ₂ CO ₃ ·H ₂ O	16.4	22.89	54.3	Na ₃ PO ₄ ·8H ₂ O	82.9	Na ₂ HPO ₄ ·2H ₂ O	
65	_	_	_	_	_	_	_	-	
70	45.6	Na ₂ CO ₃ ·H ₂ O	_	24.56	_	_	87.0	Na ₂ HPO ₄ ·2H ₂ O	
75	_	_	_	_	_	_	_	_	
80	45.1	Na ₂ CO ₃ ·H ₂ O	20.2	26.36	68.0	Na ₃ PO ₄ ·6H ₂ O	92.4	Na ₂ HPO ₄ ·2H ₂ O	
85	_	_	_	_	_	_	_	_	
90	44.9	Na ₂ CO ₃ ·H ₂ O	_	27.87	_	_	100.5	Na ₂ HPO ₄ ·2H ₂ O	
95	_	-	_	_	_	_	105.8	$Na_{2}HPO_{4} \cdot 2H_{2}O + Na_{2}HPO_{4}$	
100	44.7	Na ₂ CO ₃ ·H ₂ O	24.3	29.37	94.6	Na ₃ PO ₄ ·6H ₂ O	104.1	Na ₂ HPO ₄	

RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 94 No. 7 2021

	Solubility, g/100 g H_2O								
Temperautre, °C	Ν	Ja ₂ SO ₄ ^a	N	$[a_3(C_6H_5O_7)^c]$	$C_2H_3O_2Na^a$				
	value	solid phase	value	solid phase	value	solid phase			
20	19.2	Na ₂ SO ₄ ·10H ₂ O	33.8	$Na_3(C_6H_5O_7) \cdot 5.5H_2O$	46.5	$C_2H_3O_2Na\cdot 3H_2O$			
25	27.9		35.0		_	_			
30	40.8		36.4		54.5	$C_2H_3O_2Na\cdot 3H_2O$			
35	_	_	38.1		_	_			
40	48.4	Na ₂ SO ₄	39.9		65.5	$C_2H_3O_2Na\cdot 3H_2O$			
45	_	_	41.8		_	_			
50	46.6	Na ₂ SO ₄	41.4	$Na_3(C_6H_5O_7)\cdot 2H_2O$	83	$C_2H_3O_2Na\cdot 3H_2O$			
55	_	_	41.9		_	_			
60	45.3	Na ₂ SO ₄	42.5		139.5	C ₂ H ₃ O ₂ Na			
65	_	_	43.2		_	_			
70	44.1	Na ₂ SO ₄	43.9		146.0	C ₂ H ₃ O ₂ Na			
75	_	_	_	_	_	_			
80	43.3	Na ₂ SO ₄	_	_	153.0	C ₂ H ₃ O ₂ Na			
85	_	_	_	_	_	_			
90	42.7	Na ₂ SO ₄	_	_	161.0	C ₂ H ₃ O ₂ Na			
95	_	_	_	_	_	_			
100	42.3	Na ₂ SO ₄	_	_	170.0	C ₂ H ₃ O ₂ Na			

Table 1. (Contd.)
------------	---------

^a Spravochnik khimika (Chemist's Handbook), Nikolsky, B.P., Ed., Leningrad: Chemistry, 1965.

^b Spravochnik eksperimental 'nykh dannykh po rastvorimosti solevykh sistem (Handbook of Experimental Data on the Solubility of Salt Systems), Pelsh, A.D., Leningrad: GKhI, 1961.

^c Apelblat, A., Citric Acid, New York: Springer Int. Publ., 2014.

 Na_2CO_3 particles in a liquid film formed at the interface (Fig. 3).

The content of Na⁺ and CO₃²⁻ ions in the surface liquid layer depends on the temperature, which affects the solubility of Na₂CO₃, and the concentration of H_xAn. The released gaseous CO₂ dissolves in the liquid surface layer and interacts with CO₃²⁻ anions:

$$\mathrm{CO}_3^{2-} + \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \to 2\mathrm{H}\mathrm{CO}_3^{-}.$$
 (4)

This is assured by experimental data (Fig. 2), according to which the volume of CO_2 in the gas phase does not exceed 40–45% of the calculated one. Consequently, about 55–60% of the produced CO_2 interacts with CO_2^{2-} anions. The authors of [9, 10] also

reported the presence of dissolved CO_2 in the liquid film and its partial release into the gas phase in the study of "dry" neutralization of alkylbenzenesulfonic acid with sodium carbonate. The formation of HCO_3^- ions according to Eq. (4) and the achievement of an equimolar ratio HCO_3^-/CO_3^{2-} in the liquid layer leads to the formation of a mixed salt of carbonic acid. Similar processes, in particular, the interaction of CO_2 with CO_3^{2-} in the liquid film and the formation of sodium sesquicarbonate, also occur during the "dry" neutralization of all the H_xAn acids under study (citric, sulfuric, and acetic).

Saturation and supersaturation of the liquid layer on the surface of sodium carbonate particles with salts of carbonic and other acids leads to their crystallization. NaHCO₃ possesses the lowest solubility

RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 94 No. 7 2021

Fig. 4. Temperature of the reaction mass vs. the "dry" neutralization time in the system $Na_2CO_3-H_2O-H_3PO_4$. Acid flow (mL min⁻¹): (1) 2.5, (2) 7.5.

at synthesis temperatures (Table 1), which can crystallize first. Crystallization of Na₃PO₄·12H₂O and Na₂CO₃·NaHCO₃·2H₂O, due to the close solubility in the temperature range 40–50°C, most likely proceeds simultaneously. As a result of the formation of these phases, the surface of the primary sodium carbonate particles is covered with a layer of crystals of the above salts, and the rate of further interaction of H_xAn with Na₂CO₃ is determined by the diffusion of H⁺ to the surface of unreacted Na₂CO₃, which limits the process of "dry" neutralization.

The surface area of the solid phase Na₂CO₃, on which the surface liquid layer forms and the reactions proceed, depends on theNa₂CO₃/H_xAn ratio and is determined by the acid flow. Thus, with an increase in the H₃PO₄ solution flow from 2.5 to 7.5 mL min⁻¹, the heating time of the reaction mixture to 45°C diminishes from 6 to 2 min (Fig. 4).

This dependence is associated with an increase in the reaction zone on the surface of sodium carbonate and, consequently, the interaction rate of the reagents, the achievement of saturation and supersaturation in the Na₂CO₃–H₂O–H_xAn system, and the crystallization of sodium salts. With decreasing the temperature, the layer

thickness of the crystallizing salts rises as a result of a decrease in their solubility (Table 1). The water supplied with the H_x An solution is spent on the formation of crystalline hydrates of the salts of carbonic and other acids, as a result the synthesis products pass into a powdery state.

It has been shown experimentally [8] that along with physicochemical processes during "dry" neutralization, agglomeration of particles also occurs due to the formation of a binder, derivatives of proton-containing reagents. Upon the H_xAn neutralization and the liquid layer saturation with the corresponding salts, the viscosity and the amount of the binder rise, which in turn results in an increase in the deformability of solid particles and the degree of saturation of the powdery reaction mass with the binder. Thus, the formation time of granules is reduced, and granules are formed in the system in accordance with the scheme in Fig. 5. Their size depending on the nature of the binder, the resulting sodium salt of the acid, mainly is of 0.106–1.0 mm.

As noted earlier [8], when using citric acid, the amount of sodium citrate (binder) is formed relatively more than at application of orthophosphoric, acetic, and sulfuric acids. Consequently, the degree of saturation of the powdery mass with the binder and the proportion of the coarse fraction (>1.0 mm) are higher. When free water is bound into crystallization water, the resulting salt bridges are cemented and the bonds between the particles are strengthened, which leads to the stabilization of the granule structure.

CONCLUSIONS

During the "dry" neutralization of mono- (acetic) and polybasic (orthophosphoric, citric, sulfuric) acids (H_xAn) in the Na₂CO₃·NaHCO₃·2H₂O system with an excess of Na₂CO₃, a mixed salt of carbonic acid Na₂CO₃·NaHCO₃·2H₂O is formed due to the interaction

Fig. 5. Granule formation scheme during "dry" neutralization in the system.

of the resulting CO_2 with CO_3^{2-} anions in the liquid layer at the interface, as well as salts of H_xAn acids (phosphates, citrates, acetates, sodium sulfates). The mixture of these salts is a powdery product, in which granules with a size of 0.106–1.0 m predominate. The granule size and size distribution depend on the type of acid salt formed, which acts as binder in agglomerating the particles into granules.

CONFLICT OF INTERESTS

The authors declare that they have no conflicts of interest requiring disclosure in this article.

REFERENCES

- 1. US Patent 20160083677 (publ. 2016).
- 2. CN Patent 103690461 (publ. 2014).

- 3. Pat. KR 20130012740 (publ. 2013).
- 4. PL Patent 2002077141 (publ. 2002).
- 5. WO Patent 2014003845 (publ. 2014).
- 6. MY Patent 152191 (publ. 2014).
- Sumich, A.I. and Yeshchanka, L.S., *Russ. J. Appl. Chem.*, 2015, vol. 88, no. 5, pp. 733–737. https://doi.org/10.1134/S1070427215050031
- Sumich, A.I. and Yeshchanka, L.S., *Russ. J. Appl. Chem.*, 2015, vol. 88, no. 12, pp. 1923–1927. https://doi.org/10.1134/10704272150120038
- Shöngut, M., Grof, Zd., and Štěpánek, Fr., *Ind. Eng. Chem. Res.*, 2011, vol. 50, no. 20, pp. 1156–11584. https://doi.org/10.1021/ie201047r
- Shöngut, M., Smrčka, D., and Štěpánek, Fr., *Chem. Eng. Sci.*, 2013, vol. 86, pp. 2–8. https://doi.org/10.1016/j.ces.2012.01.003