ЛЕСОЭКСПЛУАТАЦИЯ

УДК 625.8:539.4

повышение прочности дорожных одежд путем регулирования водно-теплового режима

И. И. ЛЕОНОВИЧ, П. А. ЛЫЩИК

Белорусский технологический институт

Приведены результаты исследований прочности дорожных покрытий автомобильных лесовозных дорог. Предлагаются конструкции дренажных систем и гидроизолирующих прослоек для регулирования водно-теплового режима, чем достпается увеличение прочности и устойчивости дорожных покрытий. Для прогнозирования весенней прочности покрытий премемендуется использовать коэффициент минимальной прочности.

Дорожные покрытия, рассчитанные по наиболее чеблагоприятному за п лет расчетному состоянию грунтового основания, имеют излишний запас прочности в летние и зимние периоды, поэтому при проектировании земляного полотна и дорожных одежд необходимо всемерно стремиться к выравниванию прочности дорожной одежды в течение года. Это может быть достигнуто за счет постоянного водно-теплового режима, создаваемого при помощи пидроизолирующих прослоек и дренажей в теле земляного полотна.

В целях установления влияния гидроизолирующих прослоек и дренажных систем на величину влагонакопления, а тем самым и на прочность дорожного покрытия, были проведены исследования на опытных участках автомобильной лесовозной дороги Червенского леспромхоза.

Участок дороги с гравийным покрытием толщиной 20 см и подстилающим слоем 15 см относится к третьему типу местности по условиям увлажнения. За расчетный уровень грунтовых вод принята поверхность земли. Высота насыпи земляного полотна составляет 0.7-1.1 м, продольный уклон 5%. Грунт земляного полотна — супесь пылеватая (плотность $\delta=1.8$ г/см³, оптимальная влажность $W_{\rm out}=16.5$ %, влажность предела текучести $W_{\rm T}=27$ %).

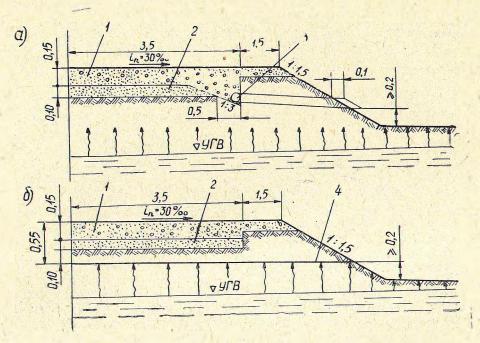
Поперечные профили опытных участков автомобильной лесовозной

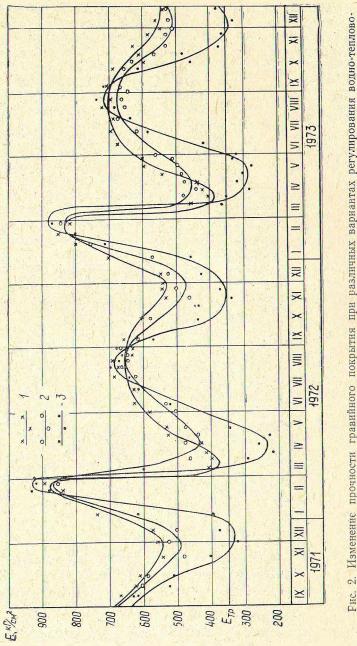
дороги представлены на рис. 1.

Гидроизолирующая прослойка из нестабилизированной полиэтиленевой пленки уложена на глубине 0,55 м от верха покрытия на всю ширину земляного полотна. Гончарные и пластмассовые дренажные трубы укладывали в верхней части земляного полотна в продольном и поперечном направлениях. На участках с гидроизоляцией и дренажем толщины песчаного подстилающего слоя и покрытия были уменьшены на 5 см.

Основные характеристики материалов, применяемых при строительстве опытных участков, представлены в табл. 1.

На опытных участках установлена контрольно-измерительная аппаратура. Для измерения влажности грунтов земляного полотна применяли почвенный влагомер AM-lil в комплекте с мегометром и датчиками влажности и радиометрический прибор HИВ-2. Влажность грунтов периодически контролировали термостатно-весовым способом.




Рис. 1. Поперечные профили опытных участков автомобильной лесовозной дороги.

 а — участок с продольным дренажем; б — участок с гидроизолирующей прослойкой; 1 — гравийное покрытие; 2 — песчаный подстилающий слой; 3 — гофрированная пластмассовая труба; 4 — полиэтиленовая нестабилизированная пленка.

Таблица 1

Показателн	Единица измерения	Величина
Полиэтиленовая нестабилизированная иленка: удельный вес прочность на растяжение модуль упругости температура размягчения морозостойкость (температура хрупкости) Пластмассовые дренажные трубы: внутренний диаметр толщина стенок вес 1 пог. м трубы диаметр водоприемных отверстий водоприемная площадь	Г'см ³ кГ см ² кГ см ² °C °C мм мм кІ мм см ² пог.м	0,92 130—180 700—2000 110—112 —70 44.6; 92,8 0,8; 1,3 0,15; 0,5 1,4 20; 7,0
Гончарные трубы: внутренний диаметр длина труб толщина стенок вес одной трубы Максимальные разрушающие нагрузки	мм мм мм кГ	50; 70 332±1 10±2 1,2—1,7 370; 640

Распределение температуры в грунтах земляного полотна контролировали датчиками ММТ-4 в комплексе с неуравновешенным мостом. Модуль деформации дорожной одежды определяли по данным вдавливания жесткого штампа и ударником Союздорнии.

менение прочности гравинного пократия при различивы вариантал регулиро Г. — участок с дренажем; 2 — участок с гидронзолящией; 3 — контрольный участок.

Результаты исследований прочности дорожного покрытия на протяжении ряда лет приведены на рис. 2.

Из полученных данных видно, что весной грунты земляното полотна переувлажняются и прочность дорожного покрытия резко снижается; на контрольном участке прочность оказалась ниже требуемой. Это явление объясняется тем, что грунты на контрольном участке имели относительную влажность в весенний период $W_{\rm отн} = 0.93$. Минимальная прочность дорожного покрытия наблюдается при оттаивании земляного полотна на глубину 0.5~m, а затем по мере опускания мерзлого до-

ника и просыхания верхних слоев земляного полотна прочность увеличивается.

Весной дренаж обеспечивает отвод избыточной воды, и период минимальной прочности в 1,5—2 раза меньше, чем на участках контрольном и с гидроизоляцией. По мере просыхания верхних слоев земляного полотна и при достижении оптимальной влажности прочность покрытия значительно увеличивается. Модуль деформации в этот период приближается к величине 600—650 кГ/см² и сохраняется практически постоянным на протяжении нескольких месяцев.

Осенью в результате выпадения большого количества атмосферных осадков в грунтах земляного полотна накапливается влага, и прочность дорожного покрытия понижается. В этот период положительную роль в повышении прочности дорожного покрытия играет дренаж, обеспечивающий уменьшение влажности, а период требуемой прочности увеличивается в 2—2,5 раза по сравнению с покрытиями без дренажа.

Дорожное покрытие имеет максимальную прочность в зимний период (модуль деформации около $900~\kappa\Gamma/cm^2$), когда грунт находится в

мерзлом состоянии.

Путем устройства дренажных систем и гидроизолирующих прослоек достигается увеличение прочности дорожного покрытия, коэффициент запаса прочности $k=\frac{E_{min}}{E_{\text{TD}}}$ всегда больше единицы.

Наблюдения за прочностью позволили установить, что при изменении k от 1 до 0,85 дорожное покрытие работает на пределе, объем разрушений не превышает 3—5%. При $k=0.85\div0.65$ на покрытиях наблюдается колейность, и объем разрушений проезжей части увеличивается до 15—20%. В этом случае целесообразно ограничить скорость движения автопоездов. Если k < 0.65, то покрытие становится не пригодным для пропуска лесовозных автопоездов. Следует закрыть дорогу во избежание разрушения покрытия.

В результате обработки данных по изменению прочности гравийных дорожных локрытий в зависимости от водно-теплового режима получен коэффициент минимальной прочности как отношение минимального модуля деформации в весенний период $E_{\rm nec}^{min}$ к модулю деформации в летний период $E_{\rm nec}$

$$k_{min} = \frac{E_{\text{BeC}}^{min}}{E_{\text{MeT}}}.$$

Значения коэффициента минимальной прочности $k_{\it min}$ приведены в табл. 2.

Коэффициент минимальной прочности kmin для дорог Тип местности без регулирования водно-теплового с регулированием по условиям водно-теплового **увлажнения** режима режима 0,7 - 0,8II 0,65 - 0,750,45 - 0,550,35-0,45 0,50 - 0,60

Таблица 2

Данные таблицы позволяют прогнозировать прочность дорожных покрытий для наиболее неблагоприятного весеннего периода по результатам измерения прочности в летний период.

Сравнивая численные значения коэффициента k_{min} , можно сделать вывод, что прочность дорожных одежд на участках с регулированием водно-теплового режима в весенний период на 30-40% выше, чем на участках без регулирования.

Значения коэффициента k_{min} , приведенные в табл. 2, получены для дорожных покрытий на участках с регулированием водно-теплового режима при помощи дренажных систем и гидроизолирующих прослоек.

Исследуемые конструкции дренажей и тидроизолирующие прослойки из полиэтиленовых материалов показали надежную работу в процессе эксплуатации и могут быть использованы для регулирования водно-теплового режима, чем будет достигнута сохранность высокой прочности дорожных покрытий.

Дополнительные затраты на мероприятия по регулированию воднотеплового режима покрываются уменьшением затрат на устройство дорожных одежд, увеличением межремонтных сроков их службы и сни-

жением себестоимости перевозок.

Повышение прочности грунтового основания путем регулирования водно-теплового режима позволит устраивать одежды меньшей толщины. Рекомендуемые способы регулирования водно-теплового режима дают возможность проектировать более устойчивые и экономичные дорожные одежды с учетом особенностей условий строительства и эксплуатации автомобильных лесовозных дорог.

Поступила 12 мая 1974 г.

УДК 624.874

УЧЕТ ЯВЛЕНИЙ ОТРЫВА ПРИ РАСЧЕТЕ ЖЕЛЕЗОБЕТОННЫХ ПЛИТ КОЛЕЙНЫХ ПОКРЫТИЙ АВТОМОБИЛЬНЫХ ЛЕСОВОЗНЫХ ДОРОГ ПРИ ДИНАМИЧЕСКОМ НАГРУЖЕНИИ

Р. Л. КОРОВКИН

Архангельский лесотехнический институт

Приводится расчет балки на упругом основании при одпосторонней связи с основанием, нагруженной импульсной нагрузкой. Дается сравнение расчета с опытом.

Как показывают экспериментальные исследования Н. И. Скрипова [2], Б. В. Уварова [3], [4] и др., при загружении конца плиты нагрузкой от заднего колеса автомобиля противоположный конец ее отрывается от основания. В литературе это обстоятельство получило название «явление отрыва». Расчет конструкций на упругом основании без учета этого явления может привести к значительным погрешностям.

Впервые расчет балок на упругом основании с учетом явления отрыва для условий статического напружения был выполнен А. А. Афендульевым [1] с использованием гипотезы коэффициента постели. Недостаток этого метода — графическое определение точки отрыва. Б. В. Уваров решил подобную задачу для балки, лежащей на упругом полупространстве [3].

Расчет плит при динамическом нагружении основывается на полу-

ченном ранее решении [4].

Если балка по длине может быть разделена на два участка, один из которых находится в контакте с основанием, а другой в отрыве от него, то участок l(t), соприкасающийся с основанием (рис. 1,a), следует