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Abstract A microscopic model of adsorption in cluster forming systems with competing interaction is
considered. The adsorption process is described by the master equation and modelled by a kinetic Monte
Carlo method. The evolution of the particle concentration and interaction energy during the adsorption
of particles on a plane triangular lattice is investigated. The simulation results show a diverse behavior
of the system time evolution depending on the temperature and chemical potential and finally on the
formation of clusters in the system. The characteristic relaxation times of adsorption vary in several orders
of magnitude depending on the thermodynamic parameters of the final equilibrium state of the adsorbate.
A very fast adsorption of particles is observed for highly ordered adsorbate equilibrium states.

1 Introduction

Currently, there is a high activity in the study of
the processes of self-organization and self-assembly in
various systems. The elements of such systems are
supramolecular formations with a molecular mass from
units to thousands of kDa that lead to low rates of
their thermal motion and sufficiently large, on molec-
ular scales, characteristic times of the processes in
them. Examples of such systems are solutions of pro-
tein molecules [1–3], which are of great interest in the
biological and medical aspects; colloid metal or semi-
conducting nanoparticles and various types of core-shell
particles that find numerous applications in catalysis,
optics, smart materials, etc. [4–6]; clays and soil sus-
pensions [7], widely used in industrial construction and
agriculture; and many others.

Monolayers of macromolecules on gas-liquid, liquid-
liquid or liquid-solid interfaces are of great importance
due to their ability to stabilize emulsions and foams,
to form self-assembled two-dimensional (2D) ordered
structures that can find applications in plasmonic sys-
tems, anti-reflecting coating, for sensing, etc. [8–10]
There exists a vast variety of experimental investiga-
tions of adsorption processes concerned with the depo-
sition of particles on surfaces and interfaces [11–20].
The significance of cooperative effects in the adsorption
processes is frequently emphasised [17,21–26].

At the same time, the interaction between these ele-
ments is very complex, and, despite their rather large
sizes compared to molecular ones, the scale of the inter-
particle interaction energy may remain insignificantly
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larger of the thermal energy of the order of several
kBT in the range of approximately room temperatures
[1,27–29]. This provides rich opportunities for various
phase transitions in such systems at room tempera-
tures because it is well known from the theory of liq-
uid state [30–32] that critical temperatures are close
to the pit depth of the interparticle interaction poten-
tial divided by the Boltzmann constant. It has been
established [33,34] that in many cases the formation
of cluster phases is a result of competing interparticle
interactions, e.g. van der Waals attraction at short and
Coulomb repulsion at larger distances (SALR systems
– Short range Attraction Long rang Repulsion).

The need to understand the processes occurring in
the systems of the types described above, the possibil-
ity of predicting their behavior in various conditions
and controlling their properties requires the develop-
ment of statistical-mechanical methods for their study.
In principle, the methods for studying molecular sys-
tems are well developed [30,31,35], however, the large
masses of particles and the peculiarity of interparticle
interactions lead to the need for a substantial mod-
ification of the developed methods. Conventional liq-
uid state theories describing their thermodynamic and
structural properies as well as non-equilibrium behavior
are based on the binary distribution functions and inte-
gral equations for them, while the systems with compet-
ing interparticle interactions are characterized by exis-
tence of clusters containing many particles that requires
many-particle distribution functions for their character-
ization. The distribution of particles among the clusters
of different sizes and the distribution of clusters over the
system volume plays an important role in the behavior
of such systems [29,36–40].
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2D lattice models of the systems with compet-
ing interactions are widely studied due to possibility
understanding many their fundamental features with
comparatively restricted computational facilities. To
date, main efforts were concentrated on investigating
microphase separation and pattern formation in bulk
[41–46] and confined [40,47–49] equilibrium systems.
Kinetic properties were rarely addressed. In Ref. [50]
scattering functions and diffusion properties of individ-
ual particles and clusters in an equilibrium SALR sys-
tem were considered. The clustering dynamics in 1D
systems was considered in [51]. Some attempts were
undertaken to model the protein adsorption based on
microscopic representations [26,52–54].

Adsorption is a complicated process that can be con-
trolled by many factors such as diffusion in the bulk
solution, barrier resistance, processes in the near sur-
face layer, reorientation and conformation changes of
adsorbed particles, and so on [11–26]. In the present
contribution, we investigate the influence of competing
interactions on the kinetics of adsorption from a solu-
tion neglecting the lateral diffusion. A main attention
is paid to the time scales of the process and manifes-
tation of cooperative effects attributed to interparticle
interactions and formation of cluster structures on the
interface.

2 Model

To study the kinetics of adsorption of the system with
interparticle competing interaction, we consider depo-
sition of particles on a flat surface from a fluid (gas or
liquid) phase where the state of the particles is char-
acterized by their chemical potential μ∗. The dynam-
ics of the system on the surface is carried out through
the processes of adsorption and desorption of particles
starting from the vacuum state and without accounting
of diffusion on the surface.

The particles on the surface are characterized by the
chemical potential μ∗ and lateral interparticle interac-
tions. As in Refs [40,43,44,48,49,55], the lattice model
on a close packing triangular lattice is considered. The
periodic boundary conditions and a system size L×L =
60 × 60 are used to minimize the confined effects in
Monte Carlo (MC) simulation. To understand the size
effect some simulations of the system with L = 120 were
performed. The average values of the required quan-
tities (particle concentration, system energy) as func-
tions of time are determined by averaging over about 20
thousand trajectories to get a more statistically reliable
results. The longest trajectories were of 8 000 Monte
Carlo steps (MCS) during which the concentration def-
initely reached the equilibrium value.

The SALR interaction potential between the particles
on the surface is taken in accordance with Refs. [44,48]:

V ∗(Δx) =

⎧
⎪⎨

⎪⎩

−J1 for |Δx| = 1, for nearest neighbors

+J∗
3 for |Δx| = 2, for third neighbors

0 otherwise,

(1)

where −J1 and J∗
3 = J3J1 represent the energy of

interparticle attraction and repulsion, respectively, x
is the radius-vector of a lattice site, |Δx| is the dis-
tance between particles on the corresponding lattice
sites. The ratio J3 = J∗

3 /J1 = 3 is used as in Refs.
[43,44,48].

The thermodynamic Hamiltonian of the system is as
follows:

H =
1
2

∑

x

∑

x′
ρ̂(x)V (x − x′)ρ̂(x′) − μ

∑

x

ρ̂(x), (2)

where
∑

x is the sum over all lattice sites, ρ̂(x) is the
occupation number. ρ̂(x) = 1 or 0 if the site with
the coordinate x is occupied or vacant. In simulations,
the dimensionless values of the interparticle interaction
energy V = V ∗/J1, temperature T = kBT ∗/J1 and
chemical potential μ = μ∗/J1 are used, kB is the Boltz-
mann constant. In our simulation, we used tempera-
tures below critical T = 0.80, around critical T = 0.95
and above critical T = 1.20. The phase diagram of the
system was built [44] at L = 120. In our case, the system
was smaller (L = 60), and at periodic boundary con-
ditions the characteristic temperatures can be slightly
larger [56,57].

The time evolution of such systems is usually described
by the master equation [58–60]

P ({x}, t∗)
dt∗

=
∑

{x′}�={x}
[W ({x′} → {x})P ({x′}, t∗)

− W ({x} → {x′})P ({x}, t∗)],

(3)

where P ({x}, t∗) is the probability for a particular
distribution {x} of particles over the lattice sites,
W ({x} → {x′}) is the transition rate for the parti-
cle distribution change from {x} to {x′}, which has to
obey the detailed balance condition.

The master equation describes the behavior of the
ensemble of systems at given initial and external condi-
tions. This behavior can be approximated by MC sim-
ulation of a large number of identical systems at these
initial and external conditions. The behavior of each
system of the ensemble is described by the microscopic
counterpart of the master equation [61–63]. For the case
of adsorption/desorption process it can be written as

dρ̂(x, t∗)
dt∗ = −ρ̂(x, t∗)Wd(x, t∗) + (1 − ρ̂(x, t∗))Wa(x, t∗),

(4)

where the thermally activated rates of the particle des-
orption or adsorption is correspondingly determined by
the expression

Wd(x, t∗) =

{
νd exp[H1(x, t∗)/T ] for H1(x, t∗) ≤ 0,

νd for H1(x, t∗) > 0,

(5)
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or

Wa(x, t∗) =

{
νa exp[−H1(x, t∗)/T ] for H1(x, t∗) > 0,

νa for H1(x, t∗) ≤ 0,

(6)

where

H1(x, t∗) = V1(x, t∗) − μ

V1(x, t∗) =
∑

x′
V (x − x′)ρ̂(x′) (7)

is the particle (H1) or particle interaction (V1) energy
on the surface, νd and νa are the frequency prefac-
tors [63,64] that can be evaluated in the framework of
the transition state theory or considering the particle
dynamics in the surface adjoining layer of the solution.
The prefactors determine the time scales of the adsorp-
tion process.

Eq.4 sometimes is also referred to as the master equa-
tion and the generalized time derivative [65,66] in it
determines the microscopic fluxes. Time in MC sim-
ulation is a discrete quantity with the time step Δt∗
equal to one trial to change the system state. In this
case the time derivative has to be replaced by the ratio
Δρ̂(x, t∗)/Δt∗ with Δρ̂(x, t∗) = ±1 or 0 depending on
the probability realization.

In fact, Eq.(6) models the sticking probability [67]
because larger the energy of adsorption H1(x, t∗)
smaller the probability of adsorption.

In MC simulation, time is usually measured in Monte
Carlo steps (MCS consists of one trial per particle).
Kinetic Monte Carlo methods [64] provide with a num-
ber of algorithms for transferring MCS into physical
time. On the other hand, the master equation allows to
use the frequency prefactors for transferring MCS into
physical time.

This conclusion can be supported by considering the
particle diffusion on a lattice. In Monte Carlo simu-
lation, the tracer diffusion coefficient is calculated in
units of the diffusion coefficient at the limit of zero cov-
erage. The time unit of the latter is the inverse prefac-
tor frequency ν−1 that determines the time scale of the
process [68]. E.g., the mean square displacement of a
particle on a square lattice with the lattice parameter
a is equal [62,68–70] < (Δx)2 >= 4DtrD

∗
0tMCS , where

Dtr is the tracer diffusion coefficient calculated through
the Monte Carlo simulation, D∗

0 = (1/4)a2ν is the dif-
fusion coefficient at the limit of zero coverage. Dtr is the
ratio of the physical diffusion coefficient D∗

tr to the dif-
fusion coefficient at the limit of zero coverage in a real
physical system D∗

0 or the ratio Dtr/D0, where D0 = 1
is the diffusion coefficient at the limit of zero coverage
in the lattice system. The tracer diffusion coefficient in
the physical system is D∗

tr = DtrD
∗
0 and it follows from

the expression < (Δx)2 >= 4D∗
trt

∗ that t∗ = tν with
t = tMCS .

The remarkable feature of the transition rates Eqs.(5),
(6) is that at νa = νd = ν they can be trans-

formed to the Metropolis’ importance sampling algo-
rithm [56,71,72] satisfying the detailed balance condi-
tion [59,73]. To this end, Eq.(4) has to be divided by
ν and dimensionless time t = νt∗ has to be used where
t is measured in MCS. In this case, the final equilib-
rium state of the system corresponds to the Hamilto-
nian Eq.(2) that has already been thoroughly investi-
gated [44] by the grand canonical MC simulation and
the inverse value of the frequency prefactor ν−1 has
to be used transferring from MCS to physical time:
t∗ = t/ν = MCS/ν.

With accounting of Eqs.(5) and (6), Eq.(4) after aver-
aging over the non-equilibrium distribution can be writ-
ten as

dc

dt
=

⎧
⎨

⎩
−cexp

[
E(t)−μ

T

]
+ (1 − c) for E(t) − μ ≤ 0,

−c + (1 − c)exp
[

μ−E(t)
T

]
for E(t) − μ > 0,

(8)

where c(t) = 〈ρ̂(x, t)〉 and E are the mean concentra-
tion and desorption/adsorption activation energy of a
particle in the reduced units, respectively. The latter at
E(t) ≶ μ can be evaluated from the expression

exp

[±E(t)

T

]

=
1

cM

〈 M∑

i=1

ρ̂iexp

[±V1(x, t)

T

] 〉

=
1

cM

〈 M∑

i=1

ρ̂iexp

[±(−z1iJ1 + z3iJ3)

T

] 〉

,

(9)

where ρ̂i ≡ ρ̂(x, t) is the occupation number of site
i, z1i and z3i are the numbers of the first and third
neighboring particles of a particle on the lattice site i
at time t, M = L2 is the total number of lattice sites,
the angular brackets mean the averaging over the non-
equilibrium ensemble or over MC trajectories.

The mean desorption/adsorption activation energy
can be represented through the cumulant expansion.
However, such a calculation is a very complicated task
and a very crude estimation only can be done at some
specific conditions. In Fig. 1 the simulation results for
the mean desorption/adsorption activation energy E in
accordance with Eq. (9) and the average energy E1 of
interaction of a particle with its surrounding (Eq.(10))
are shown.

E1(t) =
1

cM

〈 M∑

i=1

ρ̂iV1(x, t)
〉

=
1

cM

〈 M∑

i=1

ρ̂i(−z1iJ1 + z3iJ3)
〉

.

(10)

The difference between the mean desorption/
adsorption activation and average particle energy arises
due to energy fluctuations because the exponential
function,which enters in Eq.(9) increases the value of
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Fig. 1 The average E1 and mean desorption/adsorption
activation E energy of a particle on the interface at the half
(1/2) and the end (1) of the first MCS at T = 0.8 and
different chemical potential values

the integral. The contribution of fluctuations decreases
with increasing the average energy.

At negative values of the chemical potential (small
concentration) the mean energy is negative as well that
manifests the influence of the nearest neighbor attrac-
tive interactions on the adsorption process. Repulsive
interactions prevail at larger concentrations.

3 Results

3.1 Evolution of the particle concentration

The evolution of the system on the shortest time scale
can be tracked by developing the first MCS into indi-
vidual trials. Only at low values of the chemical poten-
tial when the interparticle interactions can be neglected
E1 � 0, it is possible to describe the process analyti-
cally. As it follows from Eq. (8), the adsorption kinetics
is of the first order (Langmuir non-cooperative type)
and the concentration evolution is described by the
expression (in reduced units)

c(t) = (1 + exp(−μ/T ))−1 (1 − exp(−t/τ)), (11)

where the relaxation time is τ = [1 + exp(−|μ|/T )]−1,
which varies from 0.5 to 1 MCS. In real systems at these
conditions the adsorption kinetics is diffusion limited
[11] because requires fast supply of the adsorbed par-
ticles to the surface. At these conditions, the first time
derivative of the concentration at t = 0, c = 0 in the
MC simulation completely coincides with the analyti-
cal result dc/dt = exp(μ/T ) at μ ≤ 0 or dc/dt = 1 at
μ > 0. This is an additional verification that ν−1 is the
multiplier transforming the MCS into physical time.

With an increase in the chemical potential and den-
sity of deposited particles, the interaction between the
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Fig. 2 Three types of the concentration evolution at T =
0.8 and different chemical potential values. The lower (I),
middle (II) and upper (III) curves represent the first, sec-
ond and third types of the concentration time dependencies,
respectively. A bold red line (μ = 2.4) indicate the relax-
ation curve with the high ordered state

particles becomes important. As a result, even during
the first MCS the concentration time dependence in
the MC simulation strongly deviates from the analyt-
ical solution Eq.(11). Since L2 trials are accomplished
for one Monte Carlo step, the concentration during the
first MCS rises to a rather high value dependent on
the chemical potential. The deposited particles have to
overcome the resistance of particles already deposited
on the surface, and the adsorption process becomes bar-
rier limited [11].

On the longer time scale, the adsorption intensity
decreases and the dependencies of the mean particle
concentration c on the number of Monte Carlo steps are
of three different types in different regions of the chem-
ical potential (Fig. 2) that can be characterised by the
chemical potential values μF , μR, μL, μB , μD located in
the regions of the disordered fluid, rhomboidal, fluid
with lamella residues, bubbles (inverted rhomboidal)
ordered phases and dense state with vacancies, respec-
tively. They separate the regions of various types of the
concentration time dependences. For three investigated
isotherms T = 0.8, 0.95, 1.2 they correspondingly are
μF = −1.5 (c = 0.14), −1.0(c = 0.18), -0.5 (c = 0.22),
μD = 12.5 (c = 0.78), 13.0(c = 0.82), 13.5(c = 0.86).
μR =2.4 (c = 1/3), μL = 6.0(c = 1/2), μB = 9.6(c =
2/3) at all the temperatures corresponding to highly
ordered states of the equilibrium systems.

For small μ < μF and large μ > μD values of the
chemical potential, the first simple type of reaching
the equilibrium state can be described by an expo-
nential function. For μ ∈ (μF ;μR) ∪ (μL;μB) and
μ ∈ (μR;μL)∪(μB ;μD), the second and third types are
observed, respectively. For the second type, the con-
centration time dependence is more complicated and
cannot be described by a simple exponential function.
The third type is characterised by a hump on the curve
representing the concentration time dependence (the
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Fig. 3 The disposition of the isotherms and points corre-
sponding to the minimal (min) and maximal (max) values
of the relaxation times on the phase diagram [44] of the
SALR system. F is a disordered fluid phase, OR and L are
the ordered rhombus and lamella phases, respectively, ML
is the molten lamella phase. Regions I, II, III determine the
conditions under which the corresponding type of concen-
tration relaxation is observed

upper curve in Fig. 2) manifesting the overshooting
effect [17,25]. Physically, different types correspond to
the formation of clusters in the system. The first type
is characterized mainly by the presence of monomers
and dimers, the second is a mixture of rhombuses of
different orientations and triangular clusters, and the
third is various fragments of stripes and clusters with
more than 5 particles. The regions that determine the
conditions under which the corresponding type of con-
centration relaxation is observed are shown in the phase
diagram (Fig. 3).

For the chemical potentials that correspond to the
third type of the concentration evolution, the exces-
sive concentration of particles as compared to the equi-
librium value is observed during the adsorption pro-
cess. Within a relatively small number of Monte Carlo
steps (t ∼ 10 MCS), the particles are deposited to the
surface without creating the short range ordering that
corresponds to the equilibrium distribution. This type
of concentration evolution corresponds to the chemical
potentials when at low temperatures lamella ordering
of the system is observed. At these conditions at earlier
stage, the interparticle attraction plays more important
role, while on the later stage the interparticle repul-
sion leads to establishing the equilibrium concentration
and the final interparticle distribution. The overshoot-
ing effect appears in the system with spherical interpar-
ticle interaction in contrast to Refs. [17,25] where this
effect is explained by particle re-orientations on the sur-
face.

In general, the adsorption process for these cluster-
forming systems has a complicated nature and cannot

be described by a few exponential functions. For the
second and third types of evolution it was not possi-
ble to develop an identical fitting procedure based on
exponential functions. Instead, the estimation of the
total characteristic times of the adsorption depending
on the chemical potential or equilibrium concentration
was based on reaching the equilibrium concentration.
The characteristic time can be estimated as time when
the integral of the concentration deviation from its equi-
librium value starts to be independent on the upper
limit [59,74–76]. Averaging over 20 000 trajectories and
additional smoothing over 11 MCS were used for cal-
culating

∑imax
i=1 |ceq − ∑5

j=−5 ci+j/11|, where the outer
sum approximates the integral and equilibrium concen-
tration ceq was determined by averaging the concen-
tration during last 100 MCS and over all 20 000 tra-
jectories. It was checked that the sum converges to a
constant value when the difference |ceq − ci| reaches
the value 10−4. Then the total concentration relaxation
time τct = ti was determined as time when the differ-
ence |ceq −∑5

j=−5 ci+j/11| becomes equal or smaller of
10−4.

The obtained dependence of the concentration total
relaxation time on the chemical potential is shown in
Fig. 4 (left panel). The curves are symmetric with
respect to c = 0.5(μ = 6.0) due to the symmetry of
the phase topology in the system: particles are replaced
by vacancies and the phase of ordered rhombuses is
replaced by the phase of ordered rhombus bubbles.

Additional characterization of the time evolution
during equilibrisation consists of a sequence of relax-
ation times on different time intervals [77]. Such a
sequence can be determined as time intervals dur-
ing which the deviation from the equilibrium value
decreases by e times. In our case such relaxation times
increase when the time increases. The longest of these
relaxation times τcl can be estimated as the time
interval between the moments when the concentration
reaches values that differ from ceq by e · 10−4 and 10−4

that corresponds to the time dependence |ceq − c(t)| ∼
e−t/τcl on this time interval. The simulated concentra-
tion time dependence was smoothed over 11 points as
it was described in the previous paragraph. Because τcl

characterises a part of the relaxation curve, it is shorter
of the total relaxation time (Fig. 4, right panel).

The fastest achievement of concentration equilibrium
is observed in the ordered region for the mean particle
concentrations c = 1/3, 1/2, 2/3, which correspond to
the chemical potentials μ = 2.4, 6.0, 9.6, respectively.
The concentration isotherms are shown in Fig. 5. It is
worth noting that in the ordered regions of rhombuses
and bubbles, the relaxation curves of the second and
third types merge (the curve for μ = 2.4 on Fig. 2). It
means that in the system, both parts of the interaction
potential (attractive and repulsive) under the condi-
tions of the existence of a highly ordered phase behave
equally.

Comparing with the phase diagram (Fig. 3) for these
systems, we can conclude that the points of maximal
values of the relaxation time (μ = 0.6 and μ = 4.0) for
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Fig. 4 The total (left panel) and longest (right panel) con-
centration relaxation time for the SALR system versus the
chemical potential μ. The deep minima are attained at con-
centrations c =1/3, 1/2 and 2/3 (μ = 2.4, 6.0 and 9.6,

respectively) when highly ordered phases exist; see Fig.5
representing the equilibrium concentration dependence on
the chemical potential and Fig. 3 showing the disposition of
the ordered phases

Fig. 5 Dependence of the mean equilibrium concentra-
tion on the chemical potential at different temperatures.
The isotherms intersect at the chemical potentials μ =
2.4, 6.0, 9.6 that correspond to highly ordered states at con-
centrations c = 1/3, 1/2, 2/3

the temperature T = 0.8 correspond to the phase tran-
sition points from the disordered fluid state (F) to the
phase of ordered rhombuses (OR) at μ < 6.0 or rhom-
bus bubbles at μ > 6.0. These regions are characterized
by slowdown of the adsorption process in the vicinity
of the phase transition points in analogy with the crit-
ical slowdown of kinetic processes in the systems with
simpler interactions [78]. Due to not large enough the
system size, the phase transition to the ordered rhom-
buses is not exactly of the first order. The concentra-
tion isotherms are smooth curves without empty regions

corresponding to the phase coexistence (Fig. 5). They
mix the features characteristic of the critical point (an
anomalous slowdown) like it was observed [79] in the
study of the dynamical behavior of a polymer grafted
onto an adhesive surface. Moreover, in our study the
system in the near critical region (μ = 0.6, 4.0 or 8.0)
demonstrates suppressing the fluctuations and strong
speeding up the relaxation. A noticeable acceleration
of the relaxation of the system (minima of the τct - μ
curve) after the region of critical deceleration (maxima
of the τct - μ curve) is due to the presence of a highly
ordered phase in which significant the amount of time
to establish the equilibrium. In contrast to the phase
transition region, in which there are a large number of
point defects, in the highly ordered region defects in
the process of modeling are mainly determined by the
boundaries of the domain structure of rhombuses with
different orientations.

For these temperatures, at the chemical potential
μ = 6, there is a region with lamella residues (LR)
in the system, which is ordered at lower temperatures
and forms a phase of molten lamellas. As a result, there
is no phase transition for this type of structure (Fig. 5).
In analogy with the ordered phase of rhombuses or bub-
bles, the times to reach the concentration equilibrium
are small and comparable with that for ordered rhom-
buses. The reason can be that for our system a strong
short range ordering does exist in the disordered phase
at not too high temperatures.

The temperature T = 0.95 for this system accord-
ing to the Ref. [44] is close to critical. The effects of
long relaxation time associated with the existence of a
short range ordering at this temperature still manifest
themselves. Even at a higher temperature T = 1.2 in
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Fig. 6 Types of energy relaxation at T = 0.8 and different
chemical potential values

this region, the echoes are observed. The largest time
to establish equilibrium is τct ≈ 100 MCS.

3.2 Interaction energy evolution

Alongside with the concentration evolution, the system
energy evolves as well. The concentration manifests the
evolution of the one-particle distribution function, while
the energy evolution can shad light on the evolution of
multiparticle distribution functions. The time evolution
of the energy per lattice site

Ein(t) =
1

2M

〈 M∑

i=1

ρ̂iV1(x, t)
〉

=
1

2M

〈 M∑

i=1

ρ̂i(−z1iJ1 + z3iJ3)
〉

,

(12)

shows more diverse behavior (Fig. 6) as compared to
the concentration evolution.

For small values of the chemical potential, the energy
decreases monotonically, which is caused by the pres-
ence of clusters with negative energy in the system:
dimers, triangles, and rhombuses arise under the influ-
ence of the attraction of the nearest neighbors.

With an increase in the chemical potential, pairs
of third neighbors are formed in the system at the
beginning that increase the energy of the system, after
which rhomboid clusters are formed up to their ordered
phase and thereby cause decreasing the energy. Subse-
quent concentration saturation leads to the fact that
the shape of the energy relaxation curve has character-
istic maximum and minimum points that reflect the pri-
ority of the interaction between particles. (The maxima
manifest the preference of repulsion and the minima
demonstrate importance of attraction interactions) at
different stages of reaching equilibrium. At conditions
when the region with lamella residues exists, the com-
peting interaction leads to a longer equilibrization of

the multiparticle distribution as compared to the con-
centration evolution (Fig. 7, left). As in the case of con-
centration relaxation, the total energy relaxation time
τet to reach the equilibrium state for internal energy was
determined through the difference between the equilib-
rium and the current value smoothed out over 11 points.
The equilibrium energy value was also determined by
averaging over the last 100 MCS and over 20000 tra-
jectories. The range of energy change in the system is
larger by an order of magnitude as compared to the
range for concentration, which is why when the differ-
ence |Eeq − ∑5

j=−5 Ei+j/11| reaches 10−3, the integral
of the energy over time reaches its constant value with
the necessary precision.

In the regions of unstable and disordered phases,
reaching equilibrium is accompanied by a long monoto-
nous process, in which the energy tends to an equi-
librium value. This stage, as in the case of concentra-
tion, was identified through the longest relaxation time,
which behaves like the total relaxation time, being sev-
eral times shorter.

The distribution of the relaxation times, as well as
their absolute values are mainly in correspondence with
that for the concentration evolution. The significant dif-
ferences arise at the chemical potential values μ ∈ (5; 7)
where region with lamella residues exist. The energy
total relaxation time in this region is considerably larger
of the concentration relaxation time. The mutual redis-
tribution of particles lasts for a long time after the con-
centration reaches its equilibrium value. A complicated
temperature and chemical potential dependence of the
total relaxation time in this region can be noted as
well. The distribution of the energy relaxation times
is not symmetric with respect to the concentration 0.5
due to more complicated particle redistribution in the
crowded environment at c > 0.5(μ > 6.0). At tempera-
tures 0.8 and 0.95, a deep minimum of the energy total
relaxation time is observed at μ ≈ 8.7 that does not
correspond to the highly ordered state of the rhombus
bubbles that exists at μ = 9.6 and c = 2/3. In this
region, there is a kind of gap: the energy fluctuations
over the course of the simulation are small due to the
competition between the attractive and repulsive parts
of the interaction.

In the system, saturation of particles on the surface
occurs within a short time interval in the region of
ordered rhombuses (μ = 2.4) or bubbles (μ = 9.6). In
this case, the concentration turns out to be very close
to equilibrium, but there is still no true equilibrium
state. In a few steps, the particles build up a domain
structure consisting of diamond-shaped clusters of dif-
ferent orientations. During further simulation, the clus-
ters choose only one priority direction of orientation
(there can be 3 of them in total) and the domain struc-
ture disappears. In this case, the energy of the system is
less than at the initial saturation. This process takes a
significant amount of time, which reflects the difference
between concentration and energy relaxation in these
regions.
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Fig. 7 The total (left panel) and longest (right panel) energy relaxation time versus the chemical potential at different
temperatures

3.3 Finite size effects

Although periodic boundary conditions facilitate reduc-
tion of size effects, at some conditions (e.g., in the vicin-
ity of phase transition lines or critical points [56,57,59])
size effects can be important. To understand the influ-
ence of the system size on the characteristics of adsorp-
tion kinetics, the system of size 120x120 lattice sites
was considered. As larger systems require larger com-
putational resources, less number of the system state
points and averaging over 2 000 against 20 000 MC
trajectories were considered. Several series of MC sim-
ulations with averaging over 2 000 trajectories at some
particular thermodynamic conditions were performed.
The variation of the results around 5 and 10 percent for
the concentration and energy relaxation times, respec-
tively, were observed. Thus, the precision of simulation
after averaging over 20 000 trajectories can be esti-
mated around 2–3 percent. The simulation results at
the elevated temperature T = 1.2 show (Table) that the
finite size effect is negligible at this temperature. Small
increase of the relaxation times at μ = 1.9(c � 0.33)
is only observed in the region of the ordered states at
lower temperatures.

At lower temperature T = 0.8, the size effect is dis-
cernible as it follows from Fig. 8. The relaxation times
in the region of the ordered phases or close to them in
the enlarged system are 2–3 times larger. It is not a
large difference on the background of almost 4 orders
variation of the relaxation times. What is more impor-
tant, the chemical potential (or concentration) depen-
dence of the relaxation times are similar for the systems
with L = 60 and 120. In both cases, we can see very
narrow minima for the concentration relaxation at the
chemical potentials corresponding to the most ordered
system states (μ = 2.4, c = 1/3 and μ = 6.0, c = 0.5).

The total concentration relaxation times for the sys-
tems with L = 30, 60, 120 and 180 and averaging over
2 000 MC trajectories were found equal correspond-
ingly to 2436, 2745, 6562 and 6848 MCS. The relax-
ation times depend on the system size strongly non-
linear. The most significant increase 2.39 times of the
relaxation time reached with increasing the system size
from L = 60 to 120, while it only increased 1.04 times
when the system size enlarged from 120 to 180. Prob-
ably, the finite size effect will be negligible for systems
with L ≥ 200 at T = 0.8.

Similar influence of the system size on the energy
relaxation times is observed as well (right panel on the
Fig. 8).

The finite size effect is quite sensitive to the tem-
perature change. Very large systems may be necessary
to study adsorption processes at lower temperatures.
Investigation of the adsorption finite size effects in clus-
ter forming systems can be a subject of a separate pub-
lication.

4 Discussion and conclusion

The master equation is used for describing the kinetics
of adsorption of particles with competing interaction on
a flat surface. The thermally activated adsorption and
desorption transition rates are suggested to model the
sticking probabilities. It is shown that the inverse value
of the frequency prefactor of the transition rates is the
time scale for transferring the Monte Carlo steps into
physical time.

The total relaxation time was determined as time
when the integral of the difference between the func-
tion and its equilibrium value starts to be independent
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Table 1 The total (τct) and longest (τcl) concentration relaxation times on the lattices of 60 × 60 and 120 × 120 lattice
sites at T = 1.2

μ τct τcl

60 120 60 120

0.0 15 15 5 5
1.2 79 77 28 28
1.5 115 113 47 40
1.9 123 149 55 70
2.3 42 39 27 21
2.4 7 7 4 3

Fig. 8 The total concentration τct (left panel) and interaction energy τet (right panel) relaxation times on lattices of
60 × 60 and 120 × 120 lattice sites for T = 0.8

on time. It was observed that this time is that the
lattice concentration and interaction energy reach the
values differing from their equilibrium values by 10−4

and 10−3, respectively. The longest relaxation time was
determined as the time interval during which the devia-
tion of the function from its equilibrium value decreases
by e times just before time reaches the total relax-
ation time. The longest relaxation times are several
times shorter of the total ones because they character-
ize last parts of the relaxation curves. However, both
times demonstrate similar behavior as functions of the
chemical potential and temperature.

The concentration evolution during the first Monte
Carlo step is fast. The concentration reaches values
comparable with the equilibrium concentration by the
end of the first MCS. Three different types of the subse-
quent concentration evolution was observed depending
on the final equilibrium state of the system. A simple
exponential decay of the concentration deviation from
the equilibrium value was observed at low or high equi-
librium concentration corresponding to disordered gas-
like distribution of particles or vacancies in the system.
More complicated still monotonic concentration behav-
ior is characteristic for equilibrium concentrations cor-

responding to ordered rhombuses or rhomboidal bub-
bles phases. For concentrations at which lamella exist,
the overshooting behavior is demonstrated. The concen-
tration on an earlier stage of relaxation attains values
larger of the equilibrium ones.

Alongside with the variety of the relaxation curves
shape, the relaxation times span over almost four orders
of magnitude. The largest relaxation times are attained
at concentrations corresponding to phase transitions
between ordered and disordered states. Very narrow
minima exist for ideally ordered rhombuses or rhom-
boidal bubbles at equilibrium concentrations 1/3 or 2/3
(μ = 2.4 or 9.6). An additional deep minimum at con-
centration 1/2 (μ = 6.0) can be attributed to the pecu-
liarities of the phase diagram of the system close to this
concentration [44]. A narrow region of ordered lamellas
was found there at rather low temperatures. However,
in our simulation the system was four times smaller
(L = 60 against L = 120 in Ref. [44]); thus, the crit-
ical points can be shifted to higher temperatures with
decreasing the system size [56,57].

The short range ordering can exist at temperatures
not significantly larger of the critical temperatures.
Then the barrier resistance due to creation of ordered
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structures [39,40] strongly hampers the adsorption of
particles that leads to large relaxation times at the tem-
peratures 0.8 and 0.95. However, at the concentrations
corresponding to the ideal ordering the effect of the sys-
tem self-organization ensures fast adsorption. With the
temperature increase, thermal fluctuations destroy the
ordering that leads to decrease of the relaxation times
by two orders of magnitude already at T = 1.2.

The energy relaxation curves show more complicated
behavior due to the competition between attractive
and repulsive interactions. The energy relaxation times
are comparable with that for concentration evolution
except of the region where lamellas and ordered rhom-
buses (bubles) exist. At these conditions, the particle
mutual redistribution lasts several times longer of the
concentration relaxation. On the other hand, in the
regions μ = 5, 7, 8.7, the energy reaches the equilib-
rium value rather quickly, in contrast to concentration.
This effect is caused by the competition of interactions
between particles during the simulation: energy fluc-
tuations at small times are comparable to fluctuations
at large times, when equilibrium is reached in the sys-
tem. In theese cases, the real relaxation time should be
considered as a combination of relaxation of both char-
acteristics (both concentration and internal energy).

Adsorption modelling in cluster forming systems
requires considerable statistics. Averaging over 2 000
MC trajectories provide accuracy of about 5 percent
concerning the relaxation times estimation. The finite
size effects are negligible for the system of 60×60 lattice
sites at above critical temperature T = 1.2. However,
the finite size effects are very sensitive with respect to
the temperature change. At lower temperature T = 0.8
the size effects can be negligible in considerably lager
system of 200 × 200 lattice sites. Understanding the
finite size effects in more detail requires additional large
scale simulation.

In the current research we choose equal the fre-
quency prefactors for adsorption and desorption transi-
tion rates. This allowed us to develop the kinetic Monte
Carlo algorithm leading to the equilibrium states of the
system equivalent to the results of the grand canonical
equilibrium Monte Carlo simulation [44]. It is impor-
tant to note that other choices will lead to the equilib-
rium states that depend on the ratio of the prefactors.
This means that the final adsorbate equilibrium state
depends on the details of the particle exchange between
the solution and adsorbed phase. Additional factors
requiring investigation are the attraction/repulsion of
the adsorbent surface and lateral diffusion of the adsor-
bate.
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