ІУ. МЕЛИОРАЦИЯ

ВЛИЯНИЕ ФОСФОРНЫХ И КАЛИЙНЫХ УДОБРЕНИЙ НА РОСТ СОСНОВОГО ПОДРОСТА НА МЕЛИОРИРОВАННЫХ БОЛОТАХ

И.К. Блинцов, В.А. Ипатьев, О.А. Атрощенко (Белорусский технологический институт им. С.М.Кирова)

Осущение лесных площадей является лишь первым этапом в системе мероприятий по освоению болотных территорий. Проектом лесоосущения необходимо предусматривать мероприятия по содействию естественному лесовозобновлению, так как хорошо известно, что создание лесных культур является весьма трудоемким и дорогостоящим мероприятием.

Исследованиями многих авторов [1, 6] установлено, что песоосушение сопровождается не только более энергичным ростом основного древостоя, но и способствует формированию и развитию подроста. В связи с этим изучение возможностей по улучшению роста и развития естественного подроста с целью формирования в дальнейшем высокопродуктивных насаждений на мелиорированных. торфяно-болотных почвах представляет несомненный теоретический и практический интерес.

К настоящему времени в республиках Прибалтики и ВССР накоплен некоторый опыт по применению минеральных удобрений в культурах древесных пород, создаваемых на осущенных землях [5, 3, 2, 4]. Однако роль удобрений в естественном лесовозобновлении мелиорируемых насаждений исследована весьма слабо [4, 7].

Наши исследования по изучению влияния минеральных удобрений на рост и развитие соснового подроста проводились на осущенном переходном болоте в Пуховичском лесхозе Минской области. Осущение было проведено в 1966 г. сетью открытых осущителей с расстоянием между ними 300 м. Водоприемником служит река Талька. Глубина канала 1,2 м, ширина по дну 0,6 м, коэффициенты откоса 0,5.

Пробные площади расположены своей длинной стороной параллельно каналу и удалены от последнего на 10, 50 и 150 м; размер их 300 м х 10 м. Каждая пробная площадь разделена на три секции (80 м х 10 м), которые в отдельности являются самостоятельным вариантом опыта (рис. 1). Пробные площади заложены в сосняке осоково-сфагновом. Состав насаждения 10С, действительный возраст (A) — 60 лет, средние:

12*

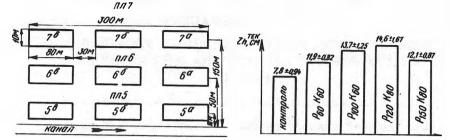


Рис. 1. Схема опыта по вариантам: 5_a , 6_a , 7_a — доза $P_{100}^{K}{}_{60}$; 5_a и 6_a — доза $P_{120}^{K}{}_{80}$; 5_a^{B} и 6_a^{B} — доза $P_{60}^{K}{}_{60}$; 7_a^{A} — доза $P_{150}^{K}{}_{80}$; 7_a^{B} — контроль.

Рис. 2. Влияние различных доз удобрений на текущий годичный прирост по высоте соснового подроста.

высота (H) – 11,2 м, диаметр на 1,3 м от шейки корня (Д) – 10,3 см, полнота 0,6, бонитет по действительному возрасту IY.

Весной 1973 г. на пробные площади были внесены фосфорные и калийные удобрения, которые равномерно распределялись по всей территории. В целях изучения влияния мелиоративной сети и действия удобрений на рост леса испытывались различные виды и дозы удобрений. На секциях 5^6 , 6^6 , и 7^6 внесена по действующему началу доза $P_{100}K_{60}$; на секциях 5^a и 6^a — $P_{120}K_{80}$; на секциях 5^a и 6^b — P_{60} K_{60} и на секции 7^a — P_{150} K_{80} . В вариантах пятой серии использовался суперфосфат простой и 40%—ная калийная соль, в остальных вариантах — суперфосфат двойной и 40%—ная соль.

Для изучения подроста на каждой секции было заложено по три учетных площадки (5 м х 5 м), на которых отдельно учитывался жизнеспособный и поврежденный подрост, измерялся годичный прирост по высоте: за последних два года до осушения, за пять лет после осушения и за два последних года (период действия удобрения).

Исследованиями установлено, что лесоосушение коренным образом изменяет экологические условия территории, особенно водно-физические свойства торфяно-болотных почв.

Данные

Таблица 1. Водно-физические свойства почв

Проб- ная пло- щадь	Рас- стоя- ние от	Глубина образца, см	Влаж- ность на сырую	Удель- ный вес	Объем - ный вес	Пороз- ность, %	Аэра- ция, %
-	кана- ла, см		навес- ку, %	г/см ³			
Ì	10	5— 10 20—30 50—70	80,0 83,9 84,6	1,7 1,5 1,4	0,12 0,10 0,10	93,0 93,0 93,0	45,0 40,7 38,0
II	50	510 2030 5070	83,3 84,5 87,3	1,5 1,4 1,8	0,11 0,10 0,10	91,5 94,0 94,0	44,2 43,6 39,5
III	150	510 2030 5070	84,7 84,9 88,0	1,3 1,6 1,7	0,09 0,09 0,09	94,0 93,6 95,0	39,5 36,5 36,0

табл. 1 показывают, что по мере удаления от мелиоративного канала увеличивается влажность торфа, повышается уровень грунтовых вод, ухудшается аэрация почв. Все это сказывается на росте и развитии соснового подроста. На неосушенных переходных болотах общее количество подроста обычно не превышает 1,0 — 1,5 тыс.шт. на 1 га, Всходы характеризуются слабым ростом и желтизной хвои. Через восемь лет после осущения количество соснового подроста на изучаемом объекте увеличилось в 2,5 — 6,5 раз. При этом максимальное увеличение отмечается на первых двух пробных площадях (вблизи осушительной канавы), подвергнувшихся наибольшему воздействию осущительной сети, имеющих наиболее благоприятный водно-воздушный и пищевой режимы.

Исследование текущего годичного прироста по высоте (рис. 2) показало, что фосфорные и калийные удобрения оказывают заметное влияние на рост соснового подроста, независимо от давности внесения. Максимальное значение текущий прирост подроста к высоте достиг при дозах удобрений P_{100} K_{60} и P_{120} K_{80} . С увеличением или снижением дозы удобрений наблюдается уменьшение прироста по высоте.

Данные табл. 2 также показывают, что на величину текущего годичного прироста соснового подроста по высоте ока-

Таблица 2. Статистические показатели значений годичного

Факторы учета	Расстояние до канала, м					
U	10	50	150			
	текущий годичный прирост по высоте, см					
	M +m	M +m	M + m			
До осушения (A)	8,4 <u>+</u> 0,55	7,9 <u>+</u> 0,60	7,9 ± 0,97			
После осушения	12,4 <u>+</u> 0,57	13,0 <u>+</u> 0,49	11,6 <u>+</u> 0,44			
Удобрение	14,0 + 1,47	7 13,7 <u>+</u> 1,25	6 11,4 <u>+</u> 0,92			

зывает влияние и местоположение пробной площади. По мере удаления от канала величина текущего годичного прироста снижается. На действие удобрения оказывает влияние фактор удаленности пробной площади от осущителя, т.е. фактор расстояния. В результате совместного влияния осущения и удобрения прирост по высоте имел наиболее высокие показатели на пробной площади, которая располагалась вблизи осущителя и на которую было внесено удобрение.

 $P_{100} K_{60} (C)$

Для оценки влияния на прирост осущения (фактора расстояния) и применяемых удобрений нами определялась достоверность разности между средними значениями годичного прироста подроста но высоте сосны с вероятностью 0,95.

Коэффициент достоверности различия средних значений при неодинаковом числе наблюдений вычисляется по формуле

$$t_{\text{факт}} = \frac{M_1 - M_2}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge t_{\text{st}}$$

где $t_{\phi a \kappa \tau}$ и t_{st} — коэффициенты достоверности различия средних (опытный и стандартный по Стьюденту); M_1 и M_2 —

Коэффи	t dakt		между						
пробными площадями при расстоянии, м			учитываемыми факторами при расстоянии, м						
10-50	50-150	10-150	10		50		150		
1-11	II—III	I-III	A-B	B-C	A-B	В-С	A-B	в-с	
0,51 2,02	0.02	<u>0,29</u> 2,1	1,81 1,96	•••	3.51 1,96	-	2,11 1,96	,-	
0.88 1,96	2,16 1,96	1,23 1,96	_	1.00) –	0,51 1,96	r = .	0,21 1,96	
0,16 2,00	1,50 2,00	6,59 1,99							

средние значения; n_1 и n_2 — количество наблюдений первой и второй выборках.

 $S = \sqrt{\frac{\binom{n_1 - 1}{1 - 1} \cdot \sigma_1^2 + \binom{n_2 - 1}{1 - 1} \cdot \sigma_2^2}{\binom{n_1 - 1}{1 - 1} + \binom{n_2 - 1}{1 - 1}}},$

где ${\bf 6}_1$ и ${\bf 6}_2$ -- средние квадратические отклонения.

Коэффициенты достоверности различия средних до осущения имеют незначительную величину (t = 0,02 - 0,51). Это подтверждает однородность исходного исследуемого материала.

Коэффициент варьирования годичного текущего прироста по высоте соснового подроста составляет 40—60%. При этом характерно увеличение коэффициента варьирования по мере удаления насаждений от канала. Таким образом, вблизи канала возобновление сосны под пологом насаждений более равномерно и интенсивнее.

После осущения коэффициенты достоверности различия средних увеличиваются по мере удаления пробных площадей от

канала, и наблюдается уже влияние расстояния при сравнении показателей II и III пробных площадей. Еще более четкая картина наблюдается при сопоставлении показателей пробной площади до осушения и пробной площади с внесенным удобрением. Коэффициент достоверности различия средних для пробных площадей I и III составляет 6,59.

Совместное влияние мелиорации и минеральных удобрений на текущий годичный прирост по высоте соснового подроста наиболее значимо.

Проведенные исследования позволяют сделать следующие выводы:

лесоосушение коренным образом меняет водно- физические свойства торфяно-болотных почв, создавая благоприятный водно-воздушный и пищевой режимы, что положительно сказывается на лесовозобновлении; количество соснового подроста через восемь лет после лесоосушения переходных болот типа сосняк осоково-сфагновый увеличилась в 2,5—6,5 раз. Годичный текущий прирост по высоте соснового подроста увеличился в 1,5—2,0 раза;

внесение фосфорных и калийных удобрений в дозе $^{
m P}_{
m 100}$ $^{
m K}_{
m 60}$

оказывает благоприятное влияние на текущий годичный прирост соснового подроста по высоте;

лесоосушение сосняка осоково-сфагнового в сочетании с применением фосфорных и калийных удобрений в дозе ${
m P}_{100}^{\rm K}_{60}$ оказывает действенное влияние на естественное возобновление сосны под пологом леса.

Литература

1. Блинцов И.К., Ипатьев В.А. Развитие соснового подроста в осущенном осоково-сфагновом сосняке. — Тез. докл. Республиканского ботанич. общ-ва. Минск, 1973. 2. Валикова В.Ф. Применение минеральных удобрений и микроэлементов под лесные культуры на торфяно-болотных почвах. М., 1958. 3. Валк У.А. Опытные работы по применению минеральных удобрений в лесном хозяйстве Латвийской ССР. — Мат-лы научн-координац. совещания по применению удобрений в лесн. хозяйстве. Гомель, 1974. 4. Ипатьев В.А., Блинцов И.К., Атрощенко О.А. Применение удобрений в мелиорируемых естественных сосновых насаждениях. — Мат-лы научн.-координац. совещания по применению удобрений в лесн. хозяйстве. Гомель, 1974. 5. Победов В.С., Какорко П.В.

Применение удобрений при создании лесных культур на осушенных переходных болотах. — Мат -лы научн.— координац, совещания по применению удобрений в лесн, хозяйстве. Гомель, 1974. 6. С моляк Л.П. Возобновление леса на осушенных торфяно-болотных почвах Полесья БССР. — "Труды ин-та леса АН СССР", т.31. М., 1955. 7. С тратович А.И., Майко М.Ф. Исследования по применению минеральных удобрений в лесах северо-западных районов таежной зоны европейской части СССР. — Мат -лы научн.-координац. совещания по применению удобрений в лесн.хозяйстве. Гомель, 1974.

ВЛИЯНИЕ ГИДРОЛОГИЧЕСКОГО РЕЖИМА ТОРФЯНО-БОЛОТНЫХ ПОЧВ НА ПРОДУКТИВНОСТЬ БЕРЕЗОВЫХ НАСАЖДЕНИЙ*

В. В. Микулик

(Белорусский технологический институт им. С.М.Кирова)

По данным Минлесхоза БССР, площадь березовых лесов, подлежащая мелиорации, составляет около 79,2 тыс. га, т.е. 24% от всего нуждающегося в осущении гидролесомелиоративного фонда республики. Однако, несмотря на многолетнюю практику мелиоративных работ и многочисленные исследования, березовые леса на мелиорированных торфяниках все еще изучены недостаточно.

Нами рассмотрено влияние гидрологического режима торфяных почв на продуктивность и изменение текущих таксационных показателей березовых насаждений. Из заложенных в 1974 г. в Жодинском лесничестве 24 постоянных пробных площадей нами рассматриваются результаты только 4. Пробные площади расположены в березовых насаждениях на мелиорируемых торфяно-болотных почвах на разном расстоянии от канала.

Болота исследуемых объектов, согласно генетической классификации И.С. Лупиновича и И.Н.Соловей [2], относятся к болотно-низинному типу почв. Подтип — торфяно-болотный, блиэкий к переходному, развивающийся в результате заболачивания суши. По классификации Л.П.Смоляка [4] они относятся к УІ категории эффективности мелиорации.

До осущения березняки исследуемых объектов относились к ивово-осоковой (пп. 5 и 7) и тростниково-осоковой (пп. 13 и