СЕЗОННАЯ ДИНАМИКА НАКОПЛЕНИЯ АСКОРБИНОВОЙ КИСЛОТЫ В ХВОЕ НЕКОТОРЫХ ВИДОВ ДРЕВЕСНЫХ РАСТЕНИЙ

Ю.А. Бибиков, В.А. Иванова

(Белорусский ордена Трудового Красного Знамени государственный университет им. В.И. Ленина)

Хвоя ели, как и сосны, находит применение в животноводстве, растениеводстве и медицине как материал, содержащий вещества высокой физиологической активности [1,2]. В этой связи нами изучалась сезонная динамика содержания аскорбиновой кислоты в хвое местных и интродуцированных видов древесных растений.

Объектами исследования были сосна обыкновенная (Pinus silvestris L.), ель обыкновенная (Picea excelsa Link.), а также 47 видов хвойных экзотов, произрастающих в ботанических садах Белгосуниверситета им. В.И. Ленина и АН БССР.

Содержание аскорбиновой кислоты в хвое определяли в зависимости от времени года, возраста и видовой принадлежности растений. При определении сезонной динамики ее накопления у сосны и ели хвою для анализов брали два раза в месяц на протяжении 1970—1971 гг., а у экзотов (сосна веймутова, сосна румелийская, сосна кедровая сибирская, ель колючая, пихта сибирская) — один раз в месяц. У остальных 42 видов интродуцентов пробы хвои брали от 3 до 5 раз в год. Для исследования хвоя использовалась с побегов в возрасте от одного до трех лет, а у некоторых видов от 1 до 4—6 лет.

Для определения аскорбиновой кислоты ветви срезали в средней части кроны растений, хорошо освещенные и ориентирован— ные к югу. Сразу же после заготовки веток из каждого образца приготовляли навеску хвои 0,5 г в трехкратной повторности. Определение количественного содержания аскорбиновой кислоты производили согласно общепринятой методике [3].

Полученные нами данные (рис. 1) свидетельствуют о том, что содержание аскорбиновой кислоты в хвое ели обыкновенной на протяжении двух лет (1970—1971 гг.) подвержено сильным изменениям: максимум превышает минимум примерно в 2 ——2,5 раза. Четко вырисовываются два максимума, весной и начале лета (апрель—июнь) и осенью (сентябрь—ноябрь); а также два минимума: летний (август) и в начале зимы (декабрь). Сход —

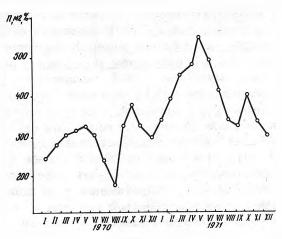


Рис. 1. Сезонная динамика накопления витамина С в хвое ели обыкновенной.

ная ритмика накопления аскорбиновой кислоты в хвое сосны и ели приводится для условия Ленинграда [1], хотя календарные сроки для максимума и минимума содержания витамина С. там были несколько иные. В наших опытах высоким содержанием аскорбиновой кислоты характеризуется хвоя ели зимой и осенью, т.е. при более низкой температуре воздуха, а с повышением летних температур количество ее снижается.

Так, содержание аскорбиновой кислоты в двулетней хвое ели летом (6 августа 1970 г.) было 165,42±2,52 мг % на сырой вес, а зимой — (6 декабря) 285,11±2,73.

Максимальное количество аскорбиновой кислоты в хвое ели (329,21±1,52 мг%) наблюдалось 20 мая и осенью 21 октября 1970 г. (382,96±0,94). В 1971 г. очень велик был весенний максимум в накоплении аскорбиновой кислоты: 21 мая он достиг 561,25±0 мг%. Довольно близкие данные нами были получены по С-витаминной активности для сосны обыкновенной.

Периодичность изменения содержания витамина С в хвое древесных растений некоторыми исследователями [2] объясняется смещением равновесия между окислительными и восстановительными процессами. По мере снижения температуры окружающей среды осенью скорость необратимого окисления аскорбиновой кислоты снижается и нарастают процессы ее восстановления. Это влечет за собой быстрый рост общего содержания витамина С. В дальнейшем содержание его в хвое (зимой) продолжает

Таблица 1. Содержание аскорбиновой кислоты в хвое экзотов

Название вида	Дата ана- лиза	Количество, мг% на сырой вес хвои		
		1 года	2 года	3 года
1	2	3	4	5
Кипарисовик горохоплод-	2.09.70	286,0	349,3	369,9
лавсона	2.09.70	245, 8	287,6	342,9
Можжевельник виргинс-	18.11.70	336,4	418,8	442,4
и казацкий	2.09.70	276,7	287,5	304,0
и китайский	23.12.71	266,4	278,8	293,1
и обыкновенный	1 23.12.71	4 47 , 0	495,2	519,2
Туя гигантская	18,11,70	291,4	306,5	426,3
″ з а падная	18,11,70	345,6	389,1	449,0
Ель аянская	17.12.71	301,1	323,2	364,1
и восточная	23.12.70	180,4	198,6	258,7
и канадская	5.03.71	312,6	468,6	483,7
и колючая	17.12.71	267,3	340,0	34 4 , 9
, колючая ф.голубая	23.12.71	309,5	354,6	385, 5
сербская	16.12.71	282,4	322,0	365,1
и сибирская	3.03.71	501,5	521,6	548,3
и ситхинская	17.12.71	259,2	287,4	308,4
и черная	5.03.71	373,9	384,1	405,6
· Шренка	3.03.71	227,9	249,3	276,6
" Энгельмана	16.12.71	408,0	437,1	463,9
Лжетсуга сизая	5.03.71	293,0	306,9	339,0
тиссолистная	12.02.71	312,6	383,1	401,0
Пихта бальзамическая	9.02.71	370,7	403,9	432,6
и белая	4.03.71	291,1	383,8	410,3
и белокорая	6.02.71	357,1	392,4	434,1
и Вича	9.02.71	305,2	334, 9	367,7
и одноцветная	6.02.71	290,3	338,5	406,1
сахалинская	6.02.71	362,9	391,2	436,5
сибирская	22.04.71	450,7	546,3	562 ,3
и Фразера	4.03.71	324,8	334,2	342,2
иельнолистная	6.02.71	302,1	338,6	358,7
Сосна Банкса	13,12,71	331,1	373,2	404,0
и веймутова	22.04.71	492,4	529,6	555,4
и горная	25.02.71	337,8	410,3	430,5
гормал катая	25,02,71	301,8	339,6	368,6
и жесткая	25.02.71	230,1	255,1	286,9
жесткая Жеффрея	24,12.71	208,1	231,7	288,7

Продолжение

	1	2	3	4	5
Сосна	кедровая ко- рейская	25.02.71	252,0	268,2	288,7
"	кедровая си- бирская	22.04.71	430,8	450,4	489,0
"	крымская	25.02.71	203,9	240,2	303,4
"	крючковатая	25.02.71	347,8	360, 8	411,8
"	румелийская	22,04,71	403,3	432,2	486,4
"	смолистая	25.02.71	298,4	3 55 , 0	390,3
"	черная	17,12,71	259,7	307,9	378,2
"	Koxa	24.12.71	250,3	286,8	315,1
Tcyra	канадская	24.02.71	384,2	431,8	463,5
Тисс :	канадский	3.03.71	306,1	324,9	341,1
"	остроконечный	2,12,70	293,2	378,7	404,6
-	ягодный	24.02.71	352,2	337,4	406,4

Содержание аскорбиновой кислоты варьирует в зависимости от возраста хвои [4,1,10]. В литературе по этому вопросу имеются противоречивые сведения. Так, одни исследователи отмечают, что с увеличением возраста хвои количество витамина С заметно снижается [7], другие показывают обратную зависимость: максимальное содержание аскорбиновой кислоты обнаружено в хвое второго и третьего года жизни [6].

На основании проведенных нами исследований (табл. 1) и (рис. 3) установлено, что с увеличением возраста хвои происходит увеличение количества аскорбиновой кислоты. У всех изучаемых видов местных и интродуцированных древесных растений нарастание количества витамина С в хвое наблюдается в возрасте от 1 до 3 лет, а у сосны обыкновенной от 1 до 4 лет. Некоторое исключение составляет ель обыкновенная, у которой увеличение аскорбиновой кислоты в хвое отмечено до 4-летнего возраста, а затем количество витамина С убывает. В данном случае большую роль, вероятно, играет не только пропесс старения хвои, но и не совсем благоприятный световой режим ветвей 5-го и 6-го года, которые расположены внутри кроны дерева.

Анализ полученных данных показывает, что не только аборигенные виды (сосна и ель обыкновенная) являются источниками аскорбиновой кислоты, но в отдельные периоды года не уступают им по содержанию витамина С и ряд интродуцентов. В зимнее время повышенным содержанием аскорбиновой кислоты отличаются: пихта бальзамическая и белокорая, сосна крючко — ватая, ель Энгельмана, тсуга канадская, тисс ягодный, мож-жевельник обыкновенный и другие, а в осеннее время — кипарисовики, туи, можжевельник казацкий и виргинский.

Географическое размещение естественных ареалов хвойных экзотов влияет на количественное содержание аскорбиновой кислоты в хвое. В условиях Минска хвойные деревья, естественные ареалы которых расположены в высоких широтах, характеризуются повышенной С-витаминной активностью (ель сибирская, пихта сибирская, сосна веймутова и др.). Экзоты, у которых естественные ареалы тяготеют к югу, отличаются невысоким содержанием аскорбиновой кислоты (сосна Коха, крымская, Жеффрея, ель Шренка и др.), в местных условиях хвоя сосны и ели – ценное сырье для медицины и животноводства. Оптимальными сроками ее заготовки являются весной апрель и май, а осенью – октябрь и ноябрь.

Литература

1. Солодкий Ф.Т., Агранат А.А. Обзорная статья по составу хвои сосны и ели. -- "Научные труды Ленинградской лесотехнической академии", № 119, вып. 1. Л., 1969. 2. Муза лева Л.Д., Ганюшкина Л.Г. Микроэлементы и аскорбиновая кислота в хвое сосны и ели. -- В сб.: Вопросы зимостойкости растений в условиях Карелии. Петрозаводск, 1971. 3. Букин В.Н. Методы определения витаминов. М., 1955. 4. Пигулевский Г.В., Никитина Г.В. Аскорбиновая кислота в растениях из семейства Ріпасеае. -- "Труды ин-та физиол. раст"., т. УІ, вып. 2, 1949. 5. Лебедев Н.Н. Сезонные колебания Свитаминной активности сосновой хвои. -- Бюллетень эксперим. биол. и медиц"., т. 15, № 6, 1943. 6. Эбеле В. Сосновая хвоя как витаминное сырье. — "Изв. АН Латв. ССР"., № 5 (94), 1955. 7. Новиков А.Л., Гуня женко И.В. О витаминной ценности хвои некоторых местных и интродуцированных видов. В сб.: Ботаника (исследования), вып. УТ. Минск, 1964. Егоров А.Д. Витамин С и каротин в растениях Якутии. 1964. 9. Сибуль И.К. К вопросу сезонной динамики ния витамина С в хвое сосны. -- "Труды і биохим, конферен -ции Прибалтийских республик", Тарту, 1961. 10. Фагина А.И., Черноморский С.А. Современные данные о витаминном составе хвои. -- "Научн. труды Ленинградской лесотехнической академии", № 119, вып. 1. Л., 1969. 11. Сташаукайте С. Пинамика витамина "C" в хвое ели и сосны. -- "Труды Ин-та биол. АН Лит. ССР", т. II. Вильнюс, 1954.