СОДЕРЖАНИЕ ОБЩЕГО И НИТРАТНОГО АЗОТА В ГЛУБОКОМ ПРОФИЛЕ ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВ

Е.М. Наркевич

(Белорусский технологический институт им. С.М. Кирова)

Среди элементов питания растений азот относится к числу важнейших, поскольку он необходим для образования белка, который является главной составной частью протоплазмы, представляющей "материальную основу великого жизненного процесса" [6]. Однако в силу хорошей растворимости в воде азот плохо удерживается в почве и легко вымывается из верхнего корнеобитаемого слоя в более глубокие горизонты. Нас интересовала возможная глубина передвижения важнейших элементов питания, в том числе и азота, в почвенном профиле. По данным некоторых авторов [1, 2, 3, 5], воздействие воды, раститель ности и живых организмов часто не ограничивается верхней двухметровой толщей, как обычно принято считать, а распространяется значительно глубже.

Нами приводятся результаты исследования обшего и нитратного азота в почвах разной степени окультуренности. Объектом для наблюдений были выбраны дерново-подзолистые сильнооподзоленные почвы, развивающиеся на глубоких лессовидных суглинках, довольно распространенные в нашей стране и обладающие высоким потенциальным плодородием.

На стационарах в Курасовщине и Щемыслице Минского района были заложены три пробные площади, на которых откапывались почвенные разрезы на глубине до 4 м.

Первая пробная площадь заложена в сосновом насаждении: сосняк дубняково-кисличный, возраст 30 лет, состав 10С; вторая — на слабоокультуренной почве в Щемыслице, где с 1961 г. возделывалась только кукуруза; третья — на хорошо окультуренной почве в Курасовщине, где с 1961 г. бессменно возделывали рожь. В отличие от первой пробной площади, вторая и третья подвергались хозяйственной деятельности человека.

Общий азот определялся в течение 3 лет: весной, летом и осенью, а нитратный — летом 1964 г. в четырехкратной повторности, Результаты анализа общего азота, определенного по методу Къельдаля, приводятся в табл. 1, из которой видно, что наибольшее количество данного элемента было в перегнойных горизонтах и возрастало по мере их окультуривания. Так, в хорошо окультуренной почве Курасовщины количество общего азота доходило до 0,12 — 0,14%, а в этом же горизонте в поч-

Таблица 1. Содержание общего азота, %

28	Гори-	Глубина		1962			1963			1964	1
pesa pesa	30H1	COPASHA,	весна	лето	осень	весна	лето	осень	весна	лето	осень
	A_1	515	70,0	80.0	60,0	0,07	60'0	80,0	80.0	20'0	60'0
	$^{A}_{2}$	2030	0,04	0,04	60,03	0,04	0,04	0,03	0,04	0,05	0,04
-	$^{\mathrm{A}}_{2}^{\mathrm{B}_{1}}$	4550	0,03	0,04	0,03	0,04	0,04	0,03	0,04	0,03	0,04
	\mathbf{B}_2	100-110	0,02	0,03	0,02	0,03	0,03	0,02	0,02	0,03	0,01
	Вз	200210	0,03	0,03	0,02	0,03	0,02	0,02	0,02	0,02	0,01
	B_{4K}	400410	0,02	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02
	A ₁	515	80,0	0,07	80,0	60.0	60,0	80 0	0,10	0,11	90,0
	A.	2535	0,04	0,05	0,03	0,04	0,05	0,03	0,05	90,0	0,03
ļc	A_2^B	4050	0,04	0,04	0,03	0,04	0,04	0,03	0,02	0,03	0,03
N	B	65—75	0,03	0,03	0,02	0,02	0,02	0,02	0,04	0,03	0,03
	H J	130140	0,02	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,02
	B		0,03	0,02	0.01	0,01	0,02	0.01	0,02	0,02	0,02
HOL	погребенная почва	330340	0,05	0,05	90,0	90,0	90.0	90,0	90,0	90'0	0,05
	A	515	0,12	0,11	0,11	0,13	0,10	0,11	0,14	0,12	0,13
	A ₂ B ₁	3040	0,05	0,05	90,0	0,05	90,0	0,05	0,05	90,0	0,05
c	en T	2009	0,03	0,03	0,03	0,04	0,05	0,04	0,04	0,05	0.04
n	$\mathbf{B}_{j}^{\mathtt{T}}$	110120	0,02	0,02	0,03	0,02	0,03	0,02	0,04	0.04	0,03
	B B	210220	0,02	0,02	0,02	0,02	0,03	0,03	0,02	0,03	0,01
погр	погребенная почва	340350	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,03	0,02

ве пп 1 его было почти вдвое меньше (0,07 - 0,08%). Слабоокультуренная почва второй пробной площади по содержанию
данного элемента занимала промежуточное значение (0,07 0,11%). С глубиной количество общего азота значительно
уменьшалось, достигая минимального значения (0,01 - 0,02 %)
на уровне около 2 м, что свидетельствует о прямой зависимости между количеством органического вещества и содержанием
данного элемента. На глубине около 0,6 - 0,8 м общий азот,
видимо, будет представлен лишь в форме соединений с минеральной частью почвы, так он легче растворяется и выносится
из почвы.

В нижних горизонтах исследуемых почв заметного накопления общего азота не обнаружено. Можно предположить, что он выносится за пределы 4-метрового профиля, а возросшее его количество в погребенной почве второй и третьей пробных площадей можно объяснить сохранившимся здесь гумусом (0,5 - 0,6%).

Сезонные изменения величин общего азота выявлены только в верхних горизонтах. Летом его было меньше, что связано с питанием растений.

Для более детального изучения азота почв и возможностей передвижения его в почвенном профиле нами определялась одна из наиболее подвижных и легкоусвояемых его форм — нитратный азот, являющийся важной формой питания растений. Процессы нитрификации, как известно, протекают при участии особых аэробных нитрифицирующих бактерий, на образование которых большое влияние оказывает среда: влажность, температура и т.д. Доступ воздуха может быть только в верхнем горизонте, поэтому на глубине более 50 см образование нитратов почти прекращается. Нитратный азот плохо удерживается в почве и легко передвигается в почвенном профиле нисходящим током атмосферных вод. Установлена [4] даже возможность перемещения нитратов по профилю на глубину 3 м и более.

Нитратный азот в исследуемых почвах определялся нами в свежих образцах дисульфофеноловым методом. Из табл. 2 видно, что наибольшее количество нитратного азота – 0,400 мг на 100 г почвы – обнаружено в перегнойном горизонте хорошо окультуренной почвы пп 3 и наименьшее – в почве под лесом – 0,250 мг на 100 г почвы. Хотя с глубиной количество нитратного азота значительно уменьшилось, однако он выявился почти во всем 4-метровом профиле. При этом нитратный азот был отме-

Таблица 2. Данные определения нитратного азота, мг на

1— я	пробная площа	дь	2— я пр	обная
горизонт	глубина образца, СМ	нитратный азот, мг на 100 г почвы	горизонт	глубина образца, см
A ₁	55	0,250	A ₁	515
$^{A}2$	2030	0,105	$^{\mathrm{A}}_{2}$	2535
$^{\mathrm{A}}2^{\mathrm{B}}1$	4550	0,095	A ₂ B ₁	4050
$^{\mathrm{B}}_{2}$	100110	0,060	$^{\mathrm{B}}_{2}$	6575
$^{\mathrm{B}}_{3}$	200210	0,020	В3	130140
$^{\mathrm{B}}_{4}$	340350	следы	${\mathtt B}_{4\mathtt Z}$	300310
В _{4к}	400410	следы	погребен- ная почва	330340
				350360

чен во всех горизонтах. Поскольку данная форма азота может образовываться лишь в аэробных условиях, то можно сделать вывод, что в толще исследуемых лессовидных суглинков нитратный азот может проникать на глубину 4 м, т.е. выходить из зоны наибольшего распространения корневых систем. В ходе подзолистого процесса почвообразования даже в суглинистых почвах может происходить вынос азота на глубину 4 м и более. По мере окультуривания содержание его заметно возрастает лишь в перегнойном горизонте, где идет накопление органического вещества. В форме минеральных соединений он плохо удерживается и легко выносится в более глубокие слои почвы.

Литература

1. Высоцкий Г.Н. Гидрологические и геобиологические наблюдения в Велико-Ападоле. — "Почвоведение",1899 №3. 2.В ысоцкий Г.Н. Об исследовании почвенной влажности до грунтовых вод. — "Почвоведение", 1934, № 4. 3. Зонн С.В. Почвенная влага и лесные насаждения. М., 1959. 4. Егоров В.Е. Изрезультатов полувекового опыта по применению удобрений в севобоброте и под бессменными посевами. — "Земледелие",1962, № 11. 5. Милосердов Н.М. Влажность почв в лесных полосах и межполосных полях в сухой степи Украины. — "Почвоведение", 1964, № 4. 6. Прянишников Д.Н. Азот в жизни растений и земледелия. М., 1945.

площадь	3-я пробная	площадь	
нитратный азот, мг на 100 г почвы	горизонт	гдубина образца, см	нитратный азот, мг на 100 г почвы
0,269	A ₁	515	0,400
0,162	A ₂ B ₁	3040	0,379
0,094	B ₁	5060	0,338
0,092	B_2	110120	0,200
0,080	В3	210220	0,090
0,020	$\mathtt{B}_{4\mathtt{д}}$	300310	0,070
следы	погребенная почва	340350	следы
следы		390400	

АЗОТНЫЙ РЕЖИМ ПОЧВ В НЕКОТОРЫХ ТИПАХ СОСНЯКОВ ПОСЛЕ ВНЕСЕНИЯ АММИАЧНОЙ СЕЛИТРЫ

В.С. Победов, И.М. Булавик (БелНИИЛХ)

Многочисленные опыты по изучению питания сосны показали, что сосновые насаждения, произрастающие на почвах легкого механического состава нуждаются в азоте [4, 7, 9]. Внесение азотных удобрений в большинстве случаев усиливало рост сосняков [3,5,6,10,13,14].

С практической точки зрения представляется интересным изучить характер распределения и длительность нахождения азота удобрений в корневой системе. С целью изучения движения азота в почве в 1972—1974 гг. нами проводились наблюдения за режимом почв после внесения аммиачной селитры в дозе 200 кг/га действующего вещества в трех типах приспевающих сосновых насаждений — вересковом, мшистом и черничном. Удобрение было внесено путем равномерного поверхностного разбрасывания: в сосняках мшистом и черничном — 5 мая 1972 г., вересковом — 14 апреля 1973 г.