биологическом круговороте зольного питания и азота в сосняках центральной части подзоны широколиственных лесов. тореф. докт. дис. М., 1966. 3. Мелехов И.С. Об отложении лесной подстилки в зависимости от типа леса. - "Труды гельского ЛТИ", т. 17. Архангельск, 1957. 4. Молчанов А.А. Влияние леса на окружающую среду. М., 1973. 5. Ремезов Н.П., Быкова Л.Н., Смирнова К.Л. Потребление и азота и зольных элементов в лесах европейской части М., 1959. 6. Рябуха Е.В. Накопление подстилки в насаждениях украинского Полесья. - "Лесоведение",1972, № 1. 7. Сахаров М.И. Органический опад в лесных фитоценозах. - "Почвоведение", 1939, № 10. 8. Цыкунов И.А. Накопление лесной подстилки в сосновых насаждениях. - В сб.: Лесоведение и лесное хозяйство, вып. 8. Минск, 1974. 9. Юркевич И.Д., Ярошевич Э.П. Биологическая продуктивность типов и ассоциаций сосновых лесов. Минск, 1974.

СВОЙСТВА ДЕРНОВО-КАРБОНАТНО-ГЛЕЕВЫХ ПОЧВ И ПРОДУКТИВНОСТЬ ДУБОВЫХ И БЕРЕЗОВЫХ НАСАЖДЕНИЙ В УСЛОВИЯХ ВАСИЛЕВИЧСКОГО ЛЕСХОЗА

К.Л. Забелло, И.А. Цыкунов

(Белорусский технологический институт им. С.М. Кирова)

Правильное размещение древесных пород с учетом почвенногрунтовых условий является важнейшим фактором повышения продуктивности лесов. Однако не всегда высокоплодородные почвы заняты полноценными с хозяйственной точки зрения древесными породами, что значительно снижает эффективность их использования [1]. Так, в Василевичском лесхозе Гомельокой области, по данным лесоустройства, значительные площади кисличных и снытевых типов леса заняты березовыми, осиновыми и грабовыми древостоями, на которых с успехом может произрастать дуб, создавая насаждения 1— II бонитетов.

Дубовые леса Белоруссии повсеместно занимают в государственном лесном фонде более 200 тыс.га [2]. Они произрастают на различных по механическому составу и химическим свойствам почвах и в зависимости от их плодородия делятся на суборевые, судубравные и дубравные.

Наиболее ценными являются высокобонитетные дубняки экологического ряда Π , занимающие самые плодородные почвы. При этом особый интерес представляют коренные дубравы, произрастающие на слабо изученных дерново-карбонатно-глеевых почвах, которые в условиях Белоруссии формируются в пониженных элементах рельефа при близком от поверхности залегании жестких грунтовых вод, богатых различными растворенными веществами, особенно карбонатами.

Таблица 1. Данные агрохимического анализа почвы на пробных

Проб- ная	Гори- зонт	Глубина взя- тия образца, см	Содер- жание физи- чес- кой глины,	Гумус,	На	
пло- шадь				%	в Н ₂ О	в КС1
1	$ \begin{array}{c} A \\ K \\ K \\ B \\ G \\ K \end{array} $	5–15 30–40 75–85 150–160	19,9 - 15,9 31,3	8,5 - -	6,82 8,15 8,05 7,82	6,2 7,71 7,70 7,20
2	A K B _{lg}	15 -2 5 50-60 75 - 85	17,1 - 15,8	7,5 - -	6,80 8,40 8,19	6,0 7,48 7,42
	В ^к С ^к	135–145 190–200	19 , 3	_	8,04 7,89	7,34 7,04
3	A _K 1	10 - 20 40 - 50	18,1	6 , 6	6,75 8,20	5,60 7,45
	B _{1g} ^K B _{2g}	60 - 70 115 - 125	15,2 16,8	-	8,36 8,35	7,60 7,69
4	C _g	180 – 190	30,1	- 5 , 0	8,30	7,35
4	A ₁ K	35-45	-	-	6,21 8,28	5,59 7,60
	B _{1g} B _{2g}	60 - 70 110 -12 0	16,4 16,5,		8,00 8,15	7,50 7,56
	Cg	170-180	10,9		6,55	5,55

Для изучения свойств этих почв и произрастающих на них насаждений запожены четыре пробные площади в Василевичском лесхозе Гомельской области в условиях местопроизрастания влажной дубравы (Д3); тип леса дубняк снытевый (Quercetum aegopodiosum) естественного происхождения. Напочвенный покров обильный и богат по видовому составу. Наиболее часто встречаются сныть, копытень, кислица, крапива двудомная, зеленчук желтый, осока трясунковидная и др. Подлесок состоит

площадях

Гидроли- тическая кислот-	Сумма по- глощенных	Степень насыщен- ности	Содержа- ние	P ₂ O ₅	к ₂ 0
кислот- ность оснований		почв основани-	CaCo ₃ ,	мг/100г почвы	
мг-экв/1	иавьоп ч	ями, %	<i>7</i> 0		
0,29	37,28	99,02	0,08	2,25	1,80
-	_	-	51,00	0,48	0,88
	-	-	0,68	3,12	1,36 2,80
_	_	-	1,72	13,75	2,00
0,68	3 6 ,4 8	98,2	0,08	2,00	3,20
_	100	<u> -</u>	27,60	0,51	0,80
-	_	-	1,30	4,2 5	2,82
	4	-	0,86	9,50	2,00
_	_	_	0,06	9,94	4,10
0.60	38,3 9	9 3, 6	0,06	3,77	1,10
2,62	00,00	_	32,00	0,57	0,90
-	_		<u> </u>		1,80
-	_	_	4,33	4,04	
_	-	_	0,60	5,25	4,50
_	_	-	0,10	10,75	8,40
3,01	28,93	90,6	0,04	2,04	1,39
2		_	28,4	0,23	0,88
		_	7 , 50	0,47	1,08
	2				2,11
-	-		3,77	9,96 10.80	2,77
0,36	10,95	96,5		10,80	

из лещины, бересклета бородавчатого, крушины ломкой. Подрост редкий из дуба, граба, ясеня, березы.

Приведем морфологическое описание почвенного разреза пробной площади 1.

- A_{o} 0 1 см. Лесная подстилка темно-бурого цвета из листьев, веток, коры, трав, хорошо разложившаяся, пронизана гифами гриба.
- A₁ 1 25 см. Перегнойный горизонт темно-серого цвета, рыхлого сложения, переплетен корнями древесной и травянистой растительности, супесь тяжелая песчанистая, рыхлого сложения с хорошо выраженной зернисто-комковатой структурой.
- К 25 55 см. Карбонатная прослойка серовато-белого цвета, пронизана корнями растений, плотного сложения.
- C_0 55 110 см. Светло-коричневая цвета с ржавоохристыми и сизыми пятнами и затеками, супесь тяжелая, встречаются корни древесной растительности.
- G 110 200 см. Оглеенный горизонт грязно-сизого цвета с ржаво-охристыми пятнами, плотного сложения, суглинок средний.

Почва дерново-карбонатно-глеевая, развивающаяся на супеси тяжелой песчанистой с карбонатной прослойкой на глубине 25 - 55 см.

Таблица 2. Таксационная характеристика насаждений

Проб- ная пло-				Сре	едние	
пло- щадь	Состав	Возраст, лет	Порода	Н,м	Д,см	Бонитет
1	8Д2Я _с	45	Д Я _с	19,0 19,2	18,7 18,9	1
2 6	Д2Я _С 1Г _р 1Е	5 44	Д Я Г	18,6 18,7 18,4 18,9	17.8 17,3 16,9 16,9	Î
3 6	Б3Д10 _с	30	Б Д О _с	15,4 14,3 16,1	13,7 12,9 15,1	1ª
4	10B	44	Б	22,2	18,6	Īå

К числу характерных морфологических особенностей этих почв следует отнести хорошую выраженность гумусного горизонта темно-серого цвета зернисто-комковатой структуры,огле-енность нижних горизонтов, наличие карбонатной прослойки.

Почвы остальных пробных площадей (2, 3, 4) очень близки к описанной, т.е. супесь тяжелая песчанистая с глубины около одного метра сменяется суглинком средним, с глубины около 25 см залегает плотная известковая прослойка мощностью около 30 см.

Почвы эти богаты гумусом (табл. 1); реакция среды верхних горизонтов близкая к нейтральной; сумма поглощенных оснований довольно высокая при низкой гидролитической кислотности; степень насыщенности почв основаниями составляет 91 - 99%.

Сравнительно низкое содержание в верхних горизонтах подвижных форм фосфора и обменного калия связано с быстрым их поглощением интенсивно развивающейся травянистой и высокобонитетной древесной растительностью. В нижних горизонтах почвы, где корневая система распространена значительно слабее, содержание подвижного фосфора и обменного калия несколько выше, чем в горизонте А₁.

Карбонатная прослойка, содержащая 28 - 51% СаСО₃, положительно влияет на агрохимические свойства почвы.

Полнота	Запас. при суще ствующей полноте	м ³ /га при пол- ноте 1,0	Средний прирост м ³ /га	Корневая стои- мость древеси- ны, руб.	Тип леса
0,76	188	234	4,1	936	Дубняк Снытевый
0,83	180	217	4,1	780	"
0,81	132	163	4,4	243	Березняк снытевый
0,84	228	271	5,2	357	"

Формирование дерново-карбонатно-глеевых почв происходит в довольно сложных условиях в результате взаимодействия дернового и болотного процессов почвообразования, при возможном кратковременном проявлении в летний период солончакового процесса. Все это в условиях промывного режима почв обусловливает большую сложность сочетаний и проявлений почвообразовательных процессов.

Поэтому до настоящего времени нет единой точки эрения о их происхождении, развитии и месте в классификационном списке почв [4].

Таксационная характеристика произрастающих на них насаждений приведена в табл. 2, из которой видно, что на исследуемых почвах дубовые насаждения произрастают по 1, а березовые по 1 бонитету. При этом запасы чистых березовых насаждений несколько выше дубовых.

Однако корневая стоимость древесины дубовых насаждений, даже в изучаемом возрасте (30 - 45 лет) выше березовых. С увеличением возраста (по мере увеличения выхода крупной древесины) различие возрастает. По имеющимся данным [5], коэффициент экономической эффективности (снытевый тип леса) для дуба равен 2,82, т.е. в три раза выше, чем для березы (0,90) и в 4,5 раза выше, чем для осины (0,61).

Следовательно, на дерново-карбонатно-глеевых почвах в условиях влажной дубравы (Д₂) более целесообразно выращивать широколиственные (дубовые) леса, которые дают ценную древесину и экономически являются наиболее эффективными.

В настоящее время гидроморфные (болотные) и частично полугидроморфные (заболачиваемые) почвы активно мелиорируются, при этом необходимо учитывать, что дерново-карбонатно-глеевые почвы с неглубоким залеганием грунтовых вод очень чувствительны к изменению водного режима.

Плодородный гумусный горизонт, залегающий на плотной карбонатной маловлагоемкой породе, при снижении грунтовых вод глубже 2 м сильно пересыхает, влажность его может снижаться до показателей устойчивого завядания растений, что резко снижает прирост насаждений. В таких случаях дуб, ясень и другие широколиственные породы постепенно выпадают, начинает появляться сосна. В условиях промывного режима почв это приводит к выщелачиванию карбонатов. Так, дерново-карбонатные вышелоченные и затем в дерново-карбонатные оподзоленные.

Таким образом, снижение уровня грунтовых вод в исследуемых почвах может привести к ухудшению их свойств, что необходимо учитывать при проведении гидромелиоративных работ.

Литература

1. Блинцов И.К. Почвенно-грунтовые условия и их влияние на рост дубрав Полесья Белорусской ССР. - "Лесной журнал", 1968, № 4. 2. Юркевич И.Д., Гельтман В.С. Растительный покров Белоруссии. Минск, 1969. 3. Юркевич И.Д., Гельтман В.С. Леса Белоруссии. Минск, 1969. 4. Почвы Белорусской ССР. Минск, 1974. 5. Янушко А.Д. Экономическая эффективность лесовыращивания в Белоруссии в зависимости от главной породы и типа условий произрастания. - В сб.: Лесоведение и лесное хозяйство, вып. 1. Минск, 1969.

ИНТЕНСИВНОСТЬ РАЗЛОЖЕНИЯ ОРГАНИЧЕСКОГО ВЕЩЕСТВА В ПОЧВАХ СОСНЯКА И ЕЛЬНИКА ОРЛЯКОВО-БРУСНИЧНЫХ

И.Э. Рихтер

(Белорусский технологический институт им. С.М. Кирова)

Количественная оценка интенсивности разложения целлюлозы является одной из важных задач при изучении динамики органического вешества и скорости оборачиваемости химических элементов в системе почва — растительность [1]. На интенсивность этого процесса оказывают существенное влияние климатические и экологические факторы.

Целью наших исследований было выявить закономерности в разложении льняной ткани в удобренной и неудобренной почвах, сезон и зону минимальной и максимальной интенсивности разложения. В опытах использовались полоски льняной ткани размером 5×20 см. Их помещали в почву на глубину 5-10, 20-25 и 35-40 см. На место вынутых полосок помещались новые на следующий срок. Об интенсивности разложения судили по разности в весах полосок до и после экспозиции. Продолжительность экспозиции 2 и 6 месяцев. Опыт продолжался с 20 октября 1973 г. по 20 августа 1974 г. Повторность опыта 5—кратная. При смене полосок из этих же прикопок брались смешанные образцы почвы для агрохимических анализов.