ване на производство на дъревесина в НРБългария. София, 1959. 4. Кислова Т.А., Борисова И.В. К методике экономичес – кой оценки типов леса и выбора главных пород. — "Лесной журнал", 1962, №4.

СВОЙСТВА ПОЧВ И ПРОДУКТИВНОСТЬ СОСНОВЫХ И СОСНОВО-БЕРЕЗОВЫХ НАСАЖДЕНИЙ В УСЛОВИЯХ МЕСТОПРОИЗРАСТАНИЯ ВЛАЖНОЙ СУБОРИ (${\tt B}_{\tt 2}$)

К.Л. Забелло, И.А. Цыкунов

(Белорусский технологический институт им. С. М. Кирова)

На территории БССР проводятся работы по крупномасштабному картированию почв гослесфонда в целях более рационального их использования. В ходе решения вопросов выращивания оптимальных, наиболее экономически эффективных насаждений, применительно к конкретным почвенно-грунтовым условиям, до настоящего времени не выработано единого мнения об экономической эффективности выращивания чистых сосновых и смешанных сосново-березовых насаждений.

Ряд авторов [1, 2, 3] считают выращивание смешанных сосново-березовых насаждений нецелесообразным. Другие выступают за смешение березы с сосной [4, 5, 6, 7, 8, 9].

В настоящем сообщении приводятся результаты исследований почвенно-грунтовых условий и продуктивности сосновых и сосново-березовых насаждений.

Пробные площади заложены в чистых сосновых (10С), с преобладанием сосны (8С2Б+Е) и с преобладанием березы (4С6Б и 9Б1С) насаждениях Негорельского учебно-опытного лесхоза. Условия местопроизрастания — влажная суборь (B_3). Тип леса — сосняк и березняк орляковые .

Живой напочвенный покров на всех пробных площадях пред - ставлен папоротником-орляком, зелеными мхами, черникой, брусникой, реже встречаются майник двулистный, грушанка кругло-листная и овсяница овечья. В подросте - ель, редко сосна, бе - реза.

Морфологическое описание почвенного разреза пробной площадки \mathbb{N} 1

 A_{0} - 0 - 2 см. Лесная подстилка темно-бурого цвета, сос -

тоящая из листвы, хвои, веточек, коры, отмершего напочвенного покрова, среднераэложившаяся.

- A_1-2-20 см. Перегнойный горизонт серого цвета, супесь легкая, рыхлого сложения, мелкокомковатой непрочной структуры, густо пронизан корнями растений.
- ${
 m A_2B_1-20-55}$ см. Подзолисто-полутораюкисный горизонт темно-желтого цвета с оранжевым оттенком, песок рыхлый, встречаются корни растений.
- ${\rm B_2}$ 55 120 см. Полутораокисный горизонт желтого цвета с буроватым оттенком и красно-бурыми прослойками ортзандов, песок рыхлый, встречаются корни растений.
- В₃₉ 120 150 см. Полутораокисный горизонт светло -желтого цвета с сизо-голубыми пятнами и прослойками оглеения, песок рыхлый, встречаются корни растений.
- С 150-200 см. Малоизмененная процессами почвообразова ния порода красно-бурого цвета, суглинок средний (моренный), плотного сложения.

Почва дерново-подзолистая слабооподзоленная, контактно - глееватая, развивающаяся на супеси легкой, подстилаемой пес-ком рыхлым и ниже (с глубины 1,5 м) суглинком средним мо-ренным.

Почвы на остальных пробных площадях близки к приведенной и несколько отличаются мощностью генетических горизонтов, а также глубиной залегания морены.

Результаты механического и агрохимического анализов, а также данные определения влажности почв приведены в табл. 1.

Как показывает механический анализ, по содержанию ческой глины горизонт А, на всех пробных площадях относится к супеси легкой, которая подстилается рыхлыми песками, сменяющимися на глубине 150 - 170 см суглинистой мореной. Верхняя толща почвы, состоящая из легких по механическому составу почвообразующих пород, характеризуется рыхлым и сыпчатым сложением и обладает хорошей аэрацией и водопро ницаемостью, нижние горизонты (суглинистая морена) плотного сложения и менее водопроницаемы. Такое строение почв в значительной степени улучшает их водно-воздушный режим. Данные определения влажности почв (июль 1973 г.) показывают, содержание воды в горизонте А, составляло 7,5 - 9,9%. Ниже лежащие горизонты до глубины 140 - 130 см имели более низкие показатели влажности, а дальше с углублением в влажность повысилась. Суглинистая морена весьма плотного сложения служит хорошим водоупором и способствует повыше -

Таблица 1. Агрохимические свойства почв пробных площадей

Проб- ная пло- щадь	Гори- зонт	Глубина образца, см	Содер- жание частин физи - ческой глины,	Поле – вая влаж– ность, %	Гумус, %	pН в КСl	Активный алюминий, мг/100 г почвы
1	2	3	4	5	6	7	8
1	A ₁	5 – 15	10,9	7 , 5	2,11	5,1	4,95
	$^{\mathrm{A}}_{2}^{\mathrm{B}}_{1}$	30 – 40	2,0	4,5	0,40	5,4	0,81
	В2	90 – 100	3,4 ·	4, 8	0,13	5,2	0,87
	B_{3g}	150 – 160	4, 8	10,8	-	5,1	0,81
	С	175 – 185	31,3	11,1	-	5,2	0,81
2	A ₁	5 - 15	11,8	8,7	2,10	4,9	6,03
	A ₂ B ₁	30 - 40	4,8	6,3	0,51	5,3	0,81
	В2	75 – 85	3,2	6,8	0,16	5,1	0,81
	B _{3g}	125 - 135	2,4	9,5	- 141	5,1	0,99
	C	165 - 175	34,2	12,4	-	5,2	1,60
3	A ₁	5 – 15	11,3	9,9	1,99	4, 5	8,28
	A_2B_1	35 - 45	3,6	6,3	0,65	5,3	1,16
	AB2	75 – 85	3,2	5,8	0,21	5,3	0,99
	B ₃	120 - 130	4,1	5,7	-	5,0	1,80
	B _{4g}	145 - 155	4,9	15,7	-	5,1	1,60
	C	170 - 180	3 6 , 5	10,5	-	5,1	1,80
4	A 1	7 – 15	11,7	9,0	2,09	4,7	7,20
	A ₂ B ₁	35 - 45	4,3	4,0	0,58	5,2	0,81
	B ₂	95 – 105	2,6	5 , 6	0,11	5,5	0,81
	B _{3g}	132 - 145	2,9	9,9	-	5,2	1,08
	C	175 – 185	33,2	11,5	_	5,2	2,16

нию влажности вышележащих генетических горизонтов. На контакте с мореной в период снеготаяния и выпадения

	Гидролити- ческая кис-	Поглощенные основа:			Степень на- сыщенности почв основа- ниями, %	P ₂ O ₅	K20
ľ	лотность мг•	Са Мэ Са+Мэ экв./100 г почвы			ниями, %	мг/100 г	
			Ŧ				
T	9	10	11	12	13	14	15
_	3,30	0,92	0,32	1,24	27,4	15,8	4,1
	1,31	0,28	0,12	0,40	.26,5	12,3	1,9
	0,96	0,40	0,24	0,64	40,0	8,2	2,3
	0,96	0,59	0.,27	0,86	47,3	12,6	3,4
	1,39	9,60	3,28	12,88	90,3	37, 6	9,4
	4,07	1,16	0,52	1,68	29,7	19,1	5,3
	1,13	0,26	0,22	0,48	2 9 , 8	10,3	4,1
	1,05	0 ,3 6	0,22	0,58	35, 6	12,6	4,1
	1,66	0,83	0,57	1,40	45,7	8,7	3,4
	1,47	7,60	2,73	10,33	87,5	25,4	8 , 0
	5,92	0,88	0,56	1,44	19,6	33, 6	3,4
,	1,79	0,32	0,18	0,50	21,8	23,0	2,7
	0,96	0,41	0,19	0,60	38,5	7,0	1,8
	1,27	1,00	0,31	1,31	50,7	6,0	6 , 0
	1,31	1,03	0,48	1,51	53, 6	8,1	3, 5
	1,48	5,52	1,68	7,20	82,9	22,8	8,1
	4,56	0,72	0,28	1,00	18,0	2 0,8	4,3
	1,48	0,47	0,25	0,72	32, 7	20,1	4,1
	0,78	0,62	0,25	0,87	52, 7	8,7	3,6
	1,13	1,21	0,61	1,82	61,7	5,4	5,0
_	1,92	6,48	1,82	8,30	81,2	9,8	14,5

обильных дождей создается временное избыточное увлажнение, что приводит к образованию пятен оглеения.

Таблица 2. Таксационно экономическая характеристика

Проб- ная пло- щадь	Состав тип леса	По-ро-да	Воз- раст, лет	Средн диа – метр, см	BbI-	Бони- тет	Пол- нота	Число стволов на 1 га, шт.
1	<u>9Б1С</u> Б. орл.	Б С	50	16,1 19,2	21,5 21,5	I ^a	0,92	1145 90
2	<u>4C6Б</u> С. орл.	С Б	50	16,1 21,9	21,2 22,9	ī ^a	0,90	537 431
	8C2Б+Е С. орл.	С Б Е	50	19,4 15,5 15,3	21,0 20,0 15,0	1 ^a	0,99	923 366 162
4 -	<u>10С</u> С. орл.	С	50	18,4	21,3	1 ^a	0,81	1172

Таким образом, рассмотренное строение почвообразующих пород на пробных площадях, где легкие по механическому составу горизонты (супеси и пески) сменяются моренным суглинком, содействует формированию контактно оглеенных почв с оптимальным для роста растений водно-воздушным режимом. Они характеризуются хорошей водопроницаемостью и аэрацией верхних генетических горизонтов, а также устойчивым водным режимом в течение вегетационного периода в результате некоторого накопления влаги на поверхности суглинистой морены.

Из данных агрохимических анализов почв (табл. 1) видно, что содержание гумуса в исследуемых почвах невелико и резко падает с глубиной. Почвы всех пробных площадей имеют кислую реакцию среды, значительную гидролитическую кислотность в горизонте А. Нижележащие генетические горизонты имеют более низкую кислотность, однако в оглеенных горизонтах морене показатели кислотности почв вновь возрастают. Активный алюминий токсично действует на произрастание древесной растительности. В горизонте А, его содержится 4,95 - 8,28 мг на 100 г почвы. Изменение содержания алюминия по профилю почвы аналогично изменению кислотности: более низкие пока затели отмечены в средней части профиля почвы и несколько повышенные - в оглеенных горизонтах и суглинистой морене.

				4		
ПО ПО- ро- Дам		при пол- ноте 1,0	Ср. при- рост, м ³ /га	Корневая стоимость продукции, руб.	Себестои - мость вы- ращивания 1 м ³ дре - весины, руб.	Уровень рентабель- ности вы- ращивания насаждений, %
I M	ı ³ /ra	l				
232 27	259	282	5,18	391	1,4	65
106 171	277	308	5,54	561	1,3	106
268 62 22	352	356	7,10	937	1,0	217
311	311	3 89	6,22	871	1,1	211

Исследуемые почвы бедны поглощенными основаниями, особенно в средней части почвенного профиля, далее с глубиной содержание их в почве увеличивается, достигая максимума в морене. При этом наиболее высокие показатели содержания по глощенных оснований отмечаются под насаждениями с преобладанием березы. Такая же закономерность наблюдается и со степенью насыщенности почв основаниями. Исследуемые почвы сравнительно богаты подвижными формами фосфора и бедны калием.

В одинаковых почвенно-грунтовых условиях (тип условий местопроизрастания В в примесь березы в сосновых насаждениях положительно влияет на изменение свойств почв: несколько снижается кислотность почвенного раствора, увеличивается содержание поглощенных оснований, возрастает степень насыщенности почв основаниями.

Таксационно-экономическая характеристика насаждений при-ведена в табл. 2.

В условиях влажной субори (B_0) как чистые сосновые, так и сосново-березовые насаждения характеризуются сравнительно высокой продуктивностью: они произрастают по I а бонитету.

Однако более высокий средний прирост и запас при существующей полноте отмечен в насаждении состава 8С2Б+Е. Увели чение доли участия березы несколько снижает средний прирост и запас насаждений. Чистые сосновые насаждения (пр. пл. 4) повреждены корневой губкой. Они, как правило, более низкополнотны поэтому по среднему приросту и запасу уступают смешанным сосново-березовым насаждениям состава 8С2Б+Е (пр. пл.3). Несмотря на то что исследуемые насаждения произрастают в одинаковых условиях местопроизрастания и примыкают непосред ственно друг к другу, в чистых сосновых насаждениях дается повышенный отпад деревьев в связи с повреждением их корневой губкой. Вследствие этого чистые сосновые насажде ния в большинстве случаев не могут создать высокополнотных насаждений.

На повышенную пораженность чистых сосновых насаждений корневой губкой по сравнению со смешанными сосново-березо-выми насаждениями указывают Н.И. Федоров, И.Т. Ермак [9] и другие авторы.

Подсчет экономической эффективности исследуемых насаждений показал, что более высокие экономические показатели имеют насаждения состава 8С2Б+Е (корневая стоимость продукции на 1 га – 937 руб., себестоимость выращивания 1 м³ древесины – 1,0 руб., уровень рентабельности составляет 217%).

Следовательно, примесь березы до двух единиц в сосновых насаждениях улучшает агрохимические свойства почв, повышает биологическую устойчивость насаждений и способствует форми – рованию древостоев с более высокими таксационно-экономическими показателями.

Литература

1. Харитонович Ф. Н., Четвериков А. В. Влияние березы на рост и продуктивность сосны обыкновенной в смешанных культурах. -- В сб.: Выращивание высокопродуктивных лесов. Минск, 1963. 2. Набатов Н. М. Роль березы в культурах сосны. - "Лесное хозяйство", 1964. № 1. 3. Олейникова В. М. Взаимовлияние сосны и березы в культурах. - "Лесное хозяйство", 1962, № 5. 4. Обновленский В. М. Выращивание сосны с березой и елью на западе зоны смешанных лесов и лесостепи. - "Лесное хозяйство", 1964, № 11. 5. Рубцов В. И. Культуры сосны в лесостепи центрально-черноземных областей. М., 1964. 6. Романов В. С. О взаимоотношении сосны и березы в Белоруссии. Тез. докл. Всесоюзн. совещания по изучению взаи -

моотношений растений в фитоценозах. Минск, 1969. 7. Рахтеенко И. Н. Основы создания устойчивых и продуктивных сменшанных лесных культур. — В сб.: Повышение продуктивности лесов методами лесных культур и основы организации хозяйства в лесах искусственного происхождения. Тез. докл. республ. научн. техн. конф. 12 — 14 сентября 1973 г. Минск, 1973. 8. Мирошников В.С., Ковальков А.И. Сравнительная продуктивность чистых и смещанных сосновых насаждений различного происхождения. — Там же, 1973. 9. Федоров Н.И., Ермак И.Т. Поражение культур сосны корневой губкой и мероприятия по борьбе с ней в условиях БССР. — Там же, 1973.

ИЗМЕНЕНИЕ АГРОХИМИЧЕСКИХ СВОЙСТВ ПОЧВЫ В ЕЛЬНИКЕ ОРЛЯКОВО-БРУСНИЧНОМ ПОД ВЛИЯНИЕМ ЛЮПИНА И МИНЕРАЛЬНЫХ УДОБРЕНИЙ

И. Э. Рихтер

(Белорусский технологический институт им. С. М. Кирова)

В данной работе представлены результаты исследований по определению влияния многолетнего люпина и минеральных удобрений на динамику агрохимических свойств дерново-подзо-

Таблица 1. Лесоводственно-таксационная пробных площадей

характеристика

Ста- цио- нар	Возраст посадоч- ного ма- териала, лет	Разме- шение культур,	Вариант	Bos- pact kynb- typ, net	чест-	Средь вы – сота, см	ие диа- метр, мм	При- рост по вы- соте за 1974г,
9 ^B 1	2 2	2x0,5	Контроль N ₆₀ P ₆₀ K ₆₀	11	6933 6216		15,3 16,3	9 17
9 ^B	4	2 x 1 2 x 1	Контроль С люпи – ном	11 11	4650 4380	217 396	21,6 31,4	23 59